On certain quantifications of Gromov’s nonsqueezing theorem
Geometry & topology, Tome 28 (2024) no. 3, pp. 1113-1152.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let R > 1 and let B be the Euclidean 4–ball of radius R with a closed subset E removed. Suppose that B embeds symplectically into the unit cylinder 𝔻2 × 2. By Gromov’s nonsqueezing theorem, E must be nonempty. We prove that the Minkowski dimension of E is at least 2, and we exhibit an explicit example showing that this result is optimal at least for R 2. In the appendix by Joé Brendel, it is shown that the lower bound is optimal for R < 3. We also discuss the minimum volume of E in the case that the symplectic embedding extends, with bounded Lipschitz constant, to the entire ball.

DOI : 10.2140/gt.2024.28.1113
Keywords: Gromov nonsqueezing, waist inequality, folding

Sackel, Kevin 1 ; Song, Antoine 2 ; Varolgunes, Umut 3 ; Zhu, Jonathan J 4

1 Department of Mathematics and Statistics, University of Massachusetts, Amherst, Amherst, MA, United States
2 Mathematics Department, California Institute of Technology, Pasadena, CA, United States
3 Department of Mathematics, Boğaziçi University, İstanbul, Turkey
4 Department of Mathematics, University of Washington, Seattle, WA, United States
@article{GT_2024_28_3_a3,
     author = {Sackel, Kevin and Song, Antoine and Varolgunes, Umut and Zhu, Jonathan J},
     title = {On certain quantifications of {Gromov{\textquoteright}s} nonsqueezing theorem},
     journal = {Geometry & topology},
     pages = {1113--1152},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2024},
     doi = {10.2140/gt.2024.28.1113},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1113/}
}
TY  - JOUR
AU  - Sackel, Kevin
AU  - Song, Antoine
AU  - Varolgunes, Umut
AU  - Zhu, Jonathan J
TI  - On certain quantifications of Gromov’s nonsqueezing theorem
JO  - Geometry & topology
PY  - 2024
SP  - 1113
EP  - 1152
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1113/
DO  - 10.2140/gt.2024.28.1113
ID  - GT_2024_28_3_a3
ER  - 
%0 Journal Article
%A Sackel, Kevin
%A Song, Antoine
%A Varolgunes, Umut
%A Zhu, Jonathan J
%T On certain quantifications of Gromov’s nonsqueezing theorem
%J Geometry & topology
%D 2024
%P 1113-1152
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1113/
%R 10.2140/gt.2024.28.1113
%F GT_2024_28_3_a3
Sackel, Kevin; Song, Antoine; Varolgunes, Umut; Zhu, Jonathan J. On certain quantifications of Gromov’s nonsqueezing theorem. Geometry & topology, Tome 28 (2024) no. 3, pp. 1113-1152. doi : 10.2140/gt.2024.28.1113. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1113/

[1] A Akopyan, R Karasev, A tight estimate for the waist of the ball, Bull. Lond. Math. Soc. 49 (2017) 690 | DOI

[2] P Biran, Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11 (2001) 407 | DOI

[3] F Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983) 305 | DOI

[4] J Brendel, G Mikhalkin, F Schlenk, Non-isotopic symplectic embeddings of cubes, in preparation

[5] R Casals, R Vianna, Full ellipsoid embeddings and toric mutations, Selecta Math. 28 (2022) 61 | DOI

[6] J D Evans, KIAS lectures on symplectic aspects of degenerations, lecture notes (2019)

[7] J D Evans, I Smith, Markov numbers and Lagrangian cell complexes in the complex projective plane, Geom. Topol. 22 (2018) 1143 | DOI

[8] S Galkin, A Usnich, Laurent phenomenon for Landau–Ginzburg potential, preprint (2010)

[9] M Golla, L Starkston, The symplectic isotopy problem for rational cuspidal curves, Compos. Math. 158 (2022) 1595 | DOI

[10] Y Groman, U Varolgunes, Locality of relative symplectic cohomology for complete embeddings, Compos. Math. 159 (2023) 2551 | DOI

[11] M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI

[12] M Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003) 178 | DOI

[13] P Hacking, Y Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010) 169 | DOI

[14] M Harada, K Kaveh, Integrable systems, toric degenerations and Okounkov bodies, Invent. Math. 202 (2015) 927 | DOI

[15] E Heintze, H Karcher, A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup. 11 (1978) 451 | DOI

[16] A B Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 539

[17] Y Lekili, M Maydanskiy, The symplectic topology of some rational homology balls, Comment. Math. Helv. 89 (2014) 571 | DOI

[18] E Lerman, Symplectic cuts, Math. Res. Lett. 2 (1995) 247 | DOI

[19] E Lerman, S Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997) 4201 | DOI

[20] P Lisca, On symplectic fillings of lens spaces, Trans. Amer. Math. Soc. 360 (2008) 765 | DOI

[21] D Mcduff, Displacing Lagrangian toric fibers via probes, from: "Low-dimensional and symplectic topology" (editor M Usher), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 131 | DOI

[22] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012)

[23] Y Memarian, On Gromov’s waist of the sphere theorem, J. Topol. Anal. 3 (2011) 7 | DOI

[24] J R Munkres, Elementary differential topology, 54, Princeton Univ. Press (1963)

[25] J Oakley, M Usher, On certain Lagrangian submanifolds of S2 × S2 and CPn, Algebr. Geom. Topol. 16 (2016) 149 | DOI

[26] E Opshtein, Maximal symplectic packings in P2, Compos. Math. 143 (2007) 1558 | DOI

[27] W D Ruan, Lagrangian torus fibration of quintic hypersurfaces, I : Fermat quintic case, from: "Winter school on mirror symmetry, vector bundles and Lagrangian submanifolds" (editors C Vafa, S T Yau), AMS/IP Stud. Adv. Math. 23, Amer. Math. Soc. (2001) 297 | DOI

[28] F Schlenk, Embedding problems in symplectic geometry, 40, de Gruyter (2005) | DOI

[29] J Seade, On the topology of isolated singularities in analytic spaces, 241, Birkhäuser (2006) | DOI

[30] M Symington, Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI

[31] L Traynor, Symplectic packing constructions, J. Differential Geom. 42 (1995) 411

[32] R F D V Vianna, Infinitely many exotic monotone Lagrangian tori in CP2, J. Topol. 9 (2016) 535 | DOI

[33] R Vianna, Infinitely many monotone Lagrangian tori in del Pezzo surfaces, Selecta Math. 23 (2017) 1955 | DOI

Cité par Sources :