Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let and let be the Euclidean –ball of radius with a closed subset removed. Suppose that embeds symplectically into the unit cylinder . By Gromov’s nonsqueezing theorem, must be nonempty. We prove that the Minkowski dimension of is at least , and we exhibit an explicit example showing that this result is optimal at least for . In the appendix by Joé Brendel, it is shown that the lower bound is optimal for . We also discuss the minimum volume of in the case that the symplectic embedding extends, with bounded Lipschitz constant, to the entire ball.
Sackel, Kevin 1 ; Song, Antoine 2 ; Varolgunes, Umut 3 ; Zhu, Jonathan J 4
@article{GT_2024_28_3_a3, author = {Sackel, Kevin and Song, Antoine and Varolgunes, Umut and Zhu, Jonathan J}, title = {On certain quantifications of {Gromov{\textquoteright}s} nonsqueezing theorem}, journal = {Geometry & topology}, pages = {1113--1152}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, doi = {10.2140/gt.2024.28.1113}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1113/} }
TY - JOUR AU - Sackel, Kevin AU - Song, Antoine AU - Varolgunes, Umut AU - Zhu, Jonathan J TI - On certain quantifications of Gromov’s nonsqueezing theorem JO - Geometry & topology PY - 2024 SP - 1113 EP - 1152 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1113/ DO - 10.2140/gt.2024.28.1113 ID - GT_2024_28_3_a3 ER -
%0 Journal Article %A Sackel, Kevin %A Song, Antoine %A Varolgunes, Umut %A Zhu, Jonathan J %T On certain quantifications of Gromov’s nonsqueezing theorem %J Geometry & topology %D 2024 %P 1113-1152 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1113/ %R 10.2140/gt.2024.28.1113 %F GT_2024_28_3_a3
Sackel, Kevin; Song, Antoine; Varolgunes, Umut; Zhu, Jonathan J. On certain quantifications of Gromov’s nonsqueezing theorem. Geometry & topology, Tome 28 (2024) no. 3, pp. 1113-1152. doi : 10.2140/gt.2024.28.1113. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1113/
[1] A tight estimate for the waist of the ball, Bull. Lond. Math. Soc. 49 (2017) 690 | DOI
, ,[2] Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11 (2001) 407 | DOI
,[3] Difféotopies des espaces lenticulaires, Topology 22 (1983) 305 | DOI
,[4] Non-isotopic symplectic embeddings of cubes, in preparation
, , ,[5] Full ellipsoid embeddings and toric mutations, Selecta Math. 28 (2022) 61 | DOI
, ,[6] KIAS lectures on symplectic aspects of degenerations, lecture notes (2019)
,[7] Markov numbers and Lagrangian cell complexes in the complex projective plane, Geom. Topol. 22 (2018) 1143 | DOI
, ,[8] Laurent phenomenon for Landau–Ginzburg potential, preprint (2010)
, ,[9] The symplectic isotopy problem for rational cuspidal curves, Compos. Math. 158 (2022) 1595 | DOI
, ,[10] Locality of relative symplectic cohomology for complete embeddings, Compos. Math. 159 (2023) 2551 | DOI
, ,[11] Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI
,[12] Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003) 178 | DOI
,[13] Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010) 169 | DOI
, ,[14] Integrable systems, toric degenerations and Okounkov bodies, Invent. Math. 202 (2015) 927 | DOI
, ,[15] A general comparison theorem with applications to volume estimates for submanifolds, Ann. Sci. École Norm. Sup. 11 (1978) 451 | DOI
, ,[16] Ergodic perturbations of degenerate integrable Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 539
,[17] The symplectic topology of some rational homology balls, Comment. Math. Helv. 89 (2014) 571 | DOI
, ,[18] Symplectic cuts, Math. Res. Lett. 2 (1995) 247 | DOI
,[19] Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997) 4201 | DOI
, ,[20] On symplectic fillings of lens spaces, Trans. Amer. Math. Soc. 360 (2008) 765 | DOI
,[21] Displacing Lagrangian toric fibers via probes, from: "Low-dimensional and symplectic topology" (editor M Usher), Proc. Sympos. Pure Math. 82, Amer. Math. Soc. (2011) 131 | DOI
,[22] J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012)
, ,[23] On Gromov’s waist of the sphere theorem, J. Topol. Anal. 3 (2011) 7 | DOI
,[24] Elementary differential topology, 54, Princeton Univ. Press (1963)
,[25] On certain Lagrangian submanifolds of S2 × S2 and CPn, Algebr. Geom. Topol. 16 (2016) 149 | DOI
, ,[26] Maximal symplectic packings in P2, Compos. Math. 143 (2007) 1558 | DOI
,[27] Lagrangian torus fibration of quintic hypersurfaces, I : Fermat quintic case, from: "Winter school on mirror symmetry, vector bundles and Lagrangian submanifolds" (editors C Vafa, S T Yau), AMS/IP Stud. Adv. Math. 23, Amer. Math. Soc. (2001) 297 | DOI
,[28] Embedding problems in symplectic geometry, 40, de Gruyter (2005) | DOI
,[29] On the topology of isolated singularities in analytic spaces, 241, Birkhäuser (2006) | DOI
,[30] Four dimensions from two in symplectic topology, from: "Topology and geometry of manifolds", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 153 | DOI
,[31] Symplectic packing constructions, J. Differential Geom. 42 (1995) 411
,[32] Infinitely many exotic monotone Lagrangian tori in CP2, J. Topol. 9 (2016) 535 | DOI
,[33] Infinitely many monotone Lagrangian tori in del Pezzo surfaces, Selecta Math. 23 (2017) 1955 | DOI
,Cité par Sources :