Moduli spaces of Ricci positive metrics in dimension five
Geometry & topology, Tome 28 (2024) no. 3, pp. 1065-1098.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use the η invariants of spinc Dirac operators to distinguish connected components of moduli spaces of Riemannian metrics with positive Ricci curvature. We then find infinitely many nondiffeomorphic five-dimensional manifolds for which these moduli spaces each have infinitely many components. The manifolds are total spaces of principal S1 bundles over #aP2 # bP2¯ and the metrics are lifted from Ricci positive metrics on the bases. Along the way we classify 5–manifolds with fundamental group 2 admitting free S1 actions with simply connected quotients.

DOI : 10.2140/gt.2024.28.1065
Keywords: moduli spaces, positive Ricci curvature

Goodman, McFeely Jackson 1

1 Department of Mathematics, Colby College, Waterville, ME, United States
@article{GT_2024_28_3_a1,
     author = {Goodman, McFeely Jackson},
     title = {Moduli spaces of {Ricci} positive metrics in dimension five},
     journal = {Geometry & topology},
     pages = {1065--1098},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2024},
     doi = {10.2140/gt.2024.28.1065},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1065/}
}
TY  - JOUR
AU  - Goodman, McFeely Jackson
TI  - Moduli spaces of Ricci positive metrics in dimension five
JO  - Geometry & topology
PY  - 2024
SP  - 1065
EP  - 1098
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1065/
DO  - 10.2140/gt.2024.28.1065
ID  - GT_2024_28_3_a1
ER  - 
%0 Journal Article
%A Goodman, McFeely Jackson
%T Moduli spaces of Ricci positive metrics in dimension five
%J Geometry & topology
%D 2024
%P 1065-1098
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1065/
%R 10.2140/gt.2024.28.1065
%F GT_2024_28_3_a1
Goodman, McFeely Jackson. Moduli spaces of Ricci positive metrics in dimension five. Geometry & topology, Tome 28 (2024) no. 3, pp. 1065-1098. doi : 10.2140/gt.2024.28.1065. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1065/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405 | DOI

[3] A Bahri, P Gilkey, The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2–groups, Pacific J. Math. 128 (1987) 1 | DOI

[4] D Barden, Simply connected five-manifolds, Ann. of Math. 82 (1965) 365 | DOI

[5] V N Berestovskiĭ, Homogeneous Riemannian manifolds of positive Ricci curvature, Mat. Zametki 58 (1995) 334

[6] A L Besse, Einstein manifolds, 10, Springer (1987) | DOI

[7] B Botvinnik, P B Gilkey, The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507 | DOI

[8] B Botvinnik, M G Walsh, D J Wraith, Homotopy groups of the observer moduli space of Ricci positive metrics, Geom. Topol. 23 (2019) 3003 | DOI

[9] J P Bourguignon, Une stratification de l’espace des structures riemanniennes, Compositio Math. 30 (1975) 1

[10] B L Burdick, Ricci-positive metrics on connected sums of projective spaces, Differential Geom. Appl. 62 (2019) 212 | DOI

[11] D Corro, F Galaz-García, Positive Ricci curvature on simply-connected manifolds with cohomogeneity-two torus actions, Proc. Amer. Math. Soc. 148 (2020) 3087 | DOI

[12] D Crowley, C M Escher, A classification of S3–bundles over S4, Differential Geom. Appl. 18 (2003) 363 | DOI

[13] A Dessai, On the moduli space of nonnegatively curved metrics on Milnor spheres, preprint (2018)

[14] A Dessai, D González-Álvaro, Moduli space of metrics of nonnegative sectional or positive Ricci curvature on homotopy real projective spaces, Trans. Amer. Math. Soc. 374 (2021) 1 | DOI

[15] A Dessai, S Klaus, W Tuschmann, Nonconnected moduli spaces of nonnegative sectional curvature metrics on simply connected manifolds, Bull. Lond. Math. Soc. 50 (2018) 96 | DOI

[16] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990)

[17] D G Ebin, The manifold of Riemannian metrics, from: "Global analysis" (editors S S Chern, S Smale), Proc. Sympos. Pure Math. XIV–XVI, Amer. Math. Soc. (1970) 11

[18] C Escher, W Ziller, Topology of non-negatively curved manifolds, Ann. Global Anal. Geom. 46 (2014) 23 | DOI

[19] H Geiges, C B Thomas, Contact topology and the structure of 5–manifolds with π1 = Z2, Ann. Inst. Fourier (Grenoble) 48 (1998) 1167 | DOI

[20] P B Gilkey, J Park, W Tuschmann, Invariant metrics of positive Ricci curvature on principal bundles, Math. Z. 227 (1998) 455 | DOI

[21] M J Goodman, On the moduli spaces of metrics with nonnegative sectional curvature, Ann. Global Anal. Geom. 57 (2020) 305 | DOI

[22] K Grove, W Ziller, Curvature and symmetry of Milnor spheres, Ann. of Math. 152 (2000) 331 | DOI

[23] K Grove, W Ziller, Cohomogeneity one manifolds with positive Ricci curvature, Invent. Math. 149 (2002) 619 | DOI

[24] K Grove, W Ziller, Lifting group actions and nonnegative curvature, Trans. Amer. Math. Soc. 363 (2011) 2865 | DOI

[25] I Hambleton, M Kreck, P Teichner, Nonorientable 4–manifolds with fundamental group of order 2, Trans. Amer. Math. Soc. 344 (1994) 649 | DOI

[26] I Hambleton, Y Su, On certain 5–manifolds with fundamental group of order 2, Q. J. Math. 64 (2013) 149 | DOI

[27] R C Kirby, L R Taylor, Pin structures on low-dimensional manifolds, from: "Geometry of low-dimensional manifolds, II" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 177 | DOI

[28] M Kreck, S Stolz, A diffeomorphism classification of 7–dimensional homogeneous Einstein manifolds with SU(3) × SU(2) × U(1)–symmetry, Ann. of Math. 127 (1988) 373 | DOI

[29] M Kreck, S Stolz, Some nondiffeomorphic homeomorphic homogeneous 7–manifolds with positive sectional curvature, J. Differential Geom. 33 (1991) 465

[30] M Kreck, S Stolz, Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993) 825 | DOI

[31] H B Lawson Jr., M L Michelsohn, Spin geometry, 38, Princeton Univ. Press (1989) | DOI

[32] S López De Medrano, Involutions on manifolds, 59, Springer (1971) | DOI

[33] J C Nash, Positive Ricci curvature on fibre bundles, J. Differential Geometry 14 (1979) 241

[34] G Perelman, Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, from: "Comparison geometry" (editors K Grove, P Petersen), Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press (1997) 157

[35] L J Schwachhöfer, W Tuschmann, Metrics of positive Ricci curvature on quotient spaces, Math. Ann. 330 (2004) 59 | DOI

[36] C Searle, F Wilhelm, How to lift positive Ricci curvature, Geom. Topol. 19 (2015) 1409 | DOI

[37] J P Sha, D Yang, Positive Ricci curvature on the connected sums of Sn × Sm, J. Differential Geom. 33 (1991) 127

[38] J P Sha, D Yang, Positive Ricci curvature on compact simply connected 4–manifolds, from: "Differential geometry: Riemannian geometry, III" (editors R Greene, S T Yau), Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 529 | DOI

[39] S Smale, On the structure of 5–manifolds, Ann. of Math. 75 (1962) 38 | DOI

[40] R E Stong, Relations among characteristic numbers, I, Topology 4 (1965) 267 | DOI

[41] M Y Wang, W Ziller, Einstein metrics on principal torus bundles, J. Differential Geom. 31 (1990) 215

[42] J Wermelinger, Moduli space of metrics of nonnegative sectional or positive Ricci curvature on Brieskorn quotients in dimension 5, preprint (2020)

[43] D Wraith, Exotic spheres with positive Ricci curvature, J. Differential Geom. 45 (1997) 638

[44] D J Wraith, New connected sums with positive Ricci curvature, Ann. Global Anal. Geom. 32 (2007) 343 | DOI

[45] D J Wraith, On the moduli space of positive Ricci curvature metrics on homotopy spheres, Geom. Topol. 15 (2011) 1983 | DOI

Cité par Sources :