Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use the invariants of Dirac operators to distinguish connected components of moduli spaces of Riemannian metrics with positive Ricci curvature. We then find infinitely many nondiffeomorphic five-dimensional manifolds for which these moduli spaces each have infinitely many components. The manifolds are total spaces of principal bundles over and the metrics are lifted from Ricci positive metrics on the bases. Along the way we classify –manifolds with fundamental group admitting free actions with simply connected quotients.
Goodman, McFeely Jackson 1
@article{GT_2024_28_3_a1, author = {Goodman, McFeely Jackson}, title = {Moduli spaces of {Ricci} positive metrics in dimension five}, journal = {Geometry & topology}, pages = {1065--1098}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2024}, doi = {10.2140/gt.2024.28.1065}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1065/} }
TY - JOUR AU - Goodman, McFeely Jackson TI - Moduli spaces of Ricci positive metrics in dimension five JO - Geometry & topology PY - 2024 SP - 1065 EP - 1098 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1065/ DO - 10.2140/gt.2024.28.1065 ID - GT_2024_28_3_a1 ER -
Goodman, McFeely Jackson. Moduli spaces of Ricci positive metrics in dimension five. Geometry & topology, Tome 28 (2024) no. 3, pp. 1065-1098. doi : 10.2140/gt.2024.28.1065. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1065/
[1] Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 | DOI
, , ,[2] Spectral asymmetry and Riemannian geometry, II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405 | DOI
, , ,[3] The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2–groups, Pacific J. Math. 128 (1987) 1 | DOI
, ,[4] Simply connected five-manifolds, Ann. of Math. 82 (1965) 365 | DOI
,[5] Homogeneous Riemannian manifolds of positive Ricci curvature, Mat. Zametki 58 (1995) 334
,[6] Einstein manifolds, 10, Springer (1987) | DOI
,[7] The eta invariant and metrics of positive scalar curvature, Math. Ann. 302 (1995) 507 | DOI
, ,[8] Homotopy groups of the observer moduli space of Ricci positive metrics, Geom. Topol. 23 (2019) 3003 | DOI
, , ,[9] Une stratification de l’espace des structures riemanniennes, Compositio Math. 30 (1975) 1
,[10] Ricci-positive metrics on connected sums of projective spaces, Differential Geom. Appl. 62 (2019) 212 | DOI
,[11] Positive Ricci curvature on simply-connected manifolds with cohomogeneity-two torus actions, Proc. Amer. Math. Soc. 148 (2020) 3087 | DOI
, ,[12] A classification of S3–bundles over S4, Differential Geom. Appl. 18 (2003) 363 | DOI
, ,[13] On the moduli space of nonnegatively curved metrics on Milnor spheres, preprint (2018)
,[14] Moduli space of metrics of nonnegative sectional or positive Ricci curvature on homotopy real projective spaces, Trans. Amer. Math. Soc. 374 (2021) 1 | DOI
, ,[15] Nonconnected moduli spaces of nonnegative sectional curvature metrics on simply connected manifolds, Bull. Lond. Math. Soc. 50 (2018) 96 | DOI
, , ,[16] The geometry of four-manifolds, Oxford Univ. Press (1990)
, ,[17] The manifold of Riemannian metrics, from: "Global analysis" (editors S S Chern, S Smale), Proc. Sympos. Pure Math. XIV–XVI, Amer. Math. Soc. (1970) 11
,[18] Topology of non-negatively curved manifolds, Ann. Global Anal. Geom. 46 (2014) 23 | DOI
, ,[19] Contact topology and the structure of 5–manifolds with π1 = Z2, Ann. Inst. Fourier (Grenoble) 48 (1998) 1167 | DOI
, ,[20] Invariant metrics of positive Ricci curvature on principal bundles, Math. Z. 227 (1998) 455 | DOI
, , ,[21] On the moduli spaces of metrics with nonnegative sectional curvature, Ann. Global Anal. Geom. 57 (2020) 305 | DOI
,[22] Curvature and symmetry of Milnor spheres, Ann. of Math. 152 (2000) 331 | DOI
, ,[23] Cohomogeneity one manifolds with positive Ricci curvature, Invent. Math. 149 (2002) 619 | DOI
, ,[24] Lifting group actions and nonnegative curvature, Trans. Amer. Math. Soc. 363 (2011) 2865 | DOI
, ,[25] Nonorientable 4–manifolds with fundamental group of order 2, Trans. Amer. Math. Soc. 344 (1994) 649 | DOI
, , ,[26] On certain 5–manifolds with fundamental group of order 2, Q. J. Math. 64 (2013) 149 | DOI
, ,[27] Pin structures on low-dimensional manifolds, from: "Geometry of low-dimensional manifolds, II" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 177 | DOI
, ,[28] A diffeomorphism classification of 7–dimensional homogeneous Einstein manifolds with SU(3) × SU(2) × U(1)–symmetry, Ann. of Math. 127 (1988) 373 | DOI
, ,[29] Some nondiffeomorphic homeomorphic homogeneous 7–manifolds with positive sectional curvature, J. Differential Geom. 33 (1991) 465
, ,[30] Nonconnected moduli spaces of positive sectional curvature metrics, J. Amer. Math. Soc. 6 (1993) 825 | DOI
, ,[31] Spin geometry, 38, Princeton Univ. Press (1989) | DOI
, ,[32] Involutions on manifolds, 59, Springer (1971) | DOI
,[33] Positive Ricci curvature on fibre bundles, J. Differential Geometry 14 (1979) 241
,[34] Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, from: "Comparison geometry" (editors K Grove, P Petersen), Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press (1997) 157
,[35] Metrics of positive Ricci curvature on quotient spaces, Math. Ann. 330 (2004) 59 | DOI
, ,[36] How to lift positive Ricci curvature, Geom. Topol. 19 (2015) 1409 | DOI
, ,[37] Positive Ricci curvature on the connected sums of Sn × Sm, J. Differential Geom. 33 (1991) 127
, ,[38] Positive Ricci curvature on compact simply connected 4–manifolds, from: "Differential geometry: Riemannian geometry, III" (editors R Greene, S T Yau), Proc. Sympos. Pure Math. 54, Amer. Math. Soc. (1993) 529 | DOI
, ,[39] On the structure of 5–manifolds, Ann. of Math. 75 (1962) 38 | DOI
,[40] Relations among characteristic numbers, I, Topology 4 (1965) 267 | DOI
,[41] Einstein metrics on principal torus bundles, J. Differential Geom. 31 (1990) 215
, ,[42] Moduli space of metrics of nonnegative sectional or positive Ricci curvature on Brieskorn quotients in dimension 5, preprint (2020)
,[43] Exotic spheres with positive Ricci curvature, J. Differential Geom. 45 (1997) 638
,[44] New connected sums with positive Ricci curvature, Ann. Global Anal. Geom. 32 (2007) 343 | DOI
,[45] On the moduli space of positive Ricci curvature metrics on homotopy spheres, Geom. Topol. 15 (2011) 1983 | DOI
,Cité par Sources :