Homological mirror symmetry for hypertoric varieties, I: Conic equivariant sheaves
Geometry & topology, Tome 28 (2024) no. 3, pp. 1005-1063.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider homological mirror symmetry in the context of hypertoric varieties, showing that an appropriate category of B–branes (that is, coherent sheaves) on an additive hypertoric variety matches a category of A–branes on a Dolbeault hypertoric manifold for the same underlying combinatorial data. For technical reasons, the A–branes we consider are modules over a deformation quantization (that is, DQ–modules). We consider objects in this category equipped with an analogue of a Hodge structure, which corresponds to a 𝔾m–action on the dual side of the mirror symmetry.

This result is based on hands-on calculations in both categories. We analyze coherent sheaves by constructing a tilting generator, using the characteristic p approach of Kaledin; the result is a sum of line bundles, which can be described using a simple combinatorial rule. The endomorphism algebra H of this tilting generator has a simple quadratic presentation in the grading induced by 𝔾m–equivariance. In fact, we can confirm it is Koszul, and compute its Koszul dual H!.

We then show that this same algebra appears as an Ext–algebra of simple A–branes in a Dolbeault hypertoric manifold. The 𝔾m–equivariant grading on coherent sheaves matches a Hodge grading in this category.

DOI : 10.2140/gt.2024.28.1005
Keywords: mirror symmetry, hypertoric, characteristic $p$, deformation quantization

McBreen, Michael 1 ; Webster, Ben 2

1 Department of Mathematics, Chinese University of Hong Kong, Hong Kong
2 Department of Pure Mathematics, University of Waterloo, Waterloo, ON, Canada, Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada
@article{GT_2024_28_3_a0,
     author = {McBreen, Michael and Webster, Ben},
     title = {Homological mirror symmetry for hypertoric varieties, {I:} {Conic} equivariant sheaves},
     journal = {Geometry & topology},
     pages = {1005--1063},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2024},
     doi = {10.2140/gt.2024.28.1005},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1005/}
}
TY  - JOUR
AU  - McBreen, Michael
AU  - Webster, Ben
TI  - Homological mirror symmetry for hypertoric varieties, I: Conic equivariant sheaves
JO  - Geometry & topology
PY  - 2024
SP  - 1005
EP  - 1063
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1005/
DO  - 10.2140/gt.2024.28.1005
ID  - GT_2024_28_3_a0
ER  - 
%0 Journal Article
%A McBreen, Michael
%A Webster, Ben
%T Homological mirror symmetry for hypertoric varieties, I: Conic equivariant sheaves
%J Geometry & topology
%D 2024
%P 1005-1063
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1005/
%R 10.2140/gt.2024.28.1005
%F GT_2024_28_3_a0
McBreen, Michael; Webster, Ben. Homological mirror symmetry for hypertoric varieties, I: Conic equivariant sheaves. Geometry & topology, Tome 28 (2024) no. 3, pp. 1005-1063. doi : 10.2140/gt.2024.28.1005. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1005/

[1] M Abouzaid, On homological mirror symmetry for toric varieties, PhD thesis, University of Chicago (2007)

[2] R Anno, R Bezrukavnikov, I Mirković, Stability conditions for Slodowy slices and real variations of stability, Mosc. Math. J. 15 (2015) 187 | DOI

[3] D Arapura, Mixed Hodge structures associated to geometric variations, from: "Cycles, motives and Shimura varieties" (editor V Srinivas), Tata Inst. Fund. Res. Stud. Math. 21, Narosa (2010) 1

[4] A Beilinson, V Ginzburg, W Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996) 473 | DOI

[5] R Bezrukavnikov, Noncommutative counterparts of the Springer resolution, from: "International Congress of Mathematicians, II" (editors M Sanz-Solé, J Soria, J L Varona, J Verdera), Eur. Math. Soc. (2006) 1119

[6] R Bezrukavnikov, D Kaledin, Fedosov quantization in positive characteristic, J. Amer. Math. Soc. 21 (2008) 409 | DOI

[7] T Braden, A Licata, N Proudfoot, B Webster, Gale duality and Koszul duality, Adv. Math. 225 (2010) 2002 | DOI

[8] T Braden, A Licata, N Proudfoot, B Webster, Hypertoric category O, Adv. Math. 231 (2012) 1487 | DOI

[9] T Braden, A Licata, N Proudfoot, B Webster, Quantizations of conical symplectic resolutions, II : Category O and symplectic duality, Astérisque 384, Soc. Math. France (2016) 75 | DOI

[10] T Braden, N Proudfoot, B Webster, Quantizations of conical symplectic resolutions, I : Local and global structure, Astérisque 384, Soc. Math. France (2016) 1 | DOI

[11] A Braverman, M Finkelberg, H Nakajima, Towards a mathematical definition of Coulomb branches of 3–dimensional N = 4 gauge theories, II, Adv. Theor. Math. Phys. 22 (2018) 1071 | DOI

[12] A Braverman, D Maulik, A Okounkov, Quantum cohomology of the Springer resolution, Adv. Math. 227 (2011) 421 | DOI

[13] J Brundan, N Davidson, Categorical actions and crystals, from: "Categorification and higher representation theory" (editors A Beliakova, A D Lauda), Contemp. Math. 683, Amer. Math. Soc. (2017) 105 | DOI

[14] M Bullimore, T Dimofte, D Gaiotto, J Hilburn, Boundaries, mirror symmetry, and symplectic duality in 3D N = 4 gauge theory, J. High Energy Phys. (2016) 108 | DOI

[15] A Cannas Da Silva, Lectures on symplectic geometry, 1764, Springer (2001) | DOI

[16] Z Dancso, M Mcbreen, V Shende, Deletion-contraction triangles for Hausel–Proudfoot varieties, preprint (2019)

[17] P Deligne, Un théorème de finitude pour la monodromie, from: "Discrete groups in geometry and analysis" (editor R Howe), Progr. Math. 67, Birkhäuser (1987) 1 | DOI

[18] P Freyd, Representations in abelian categories, from: "Proceedings of the Conference on Categorical Algebra" (editors S Eilenberg, D K Harrison, H Röhrl), Springer (1966) 95 | DOI

[19] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, I, 46.1, Amer. Math. Soc. (2009) | DOI

[20] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, II, 46.2, Amer. Math. Soc. (2009) | DOI

[21] B Gammage, M Mcbreen, B Webster, Homological mirror symmetry for hypertoric varieties, II, preprint (2019)

[22] I Ganev, Quantizations of multiplicative hypertoric varieties at a root of unity, J. Algebra 506 (2018) 92 | DOI

[23] M Groechenig, M Mcbreen, Hypertoric Hitchin systems and Kirchhoff polynomials, Int. Math. Res. Not. 2022 (2022) 15271 | DOI

[24] M Gross, P M H Wilson, Large complex structure limits of K3 surfaces, J. Differential Geom. 55 (2000) 475

[25] D Kaledin, Derived equivalences by quantization, Geom. Funct. Anal. 17 (2008) 1968 | DOI

[26] M Kashiwara, R Rouquier, Microlocalization of rational Cherednik algebras, Duke Math. J. 144 (2008) 525 | DOI

[27] S C Lau, X Zheng, SYZ mirror symmetry for hypertoric varieties, Comm. Math. Phys. 373 (2020) 1133 | DOI

[28] D Maulik, A Okounkov, Quantum groups and quantum cohomology, 408, Soc. Math. France (2019) | DOI

[29] V Mazorchuk, S Ovsienko, C Stroppel, Quadratic duals, Koszul dual functors, and applications, Trans. Amer. Math. Soc. 361 (2009) 1129 | DOI

[30] M B Mcbreen, D K Shenfeld, Quantum cohomology of hypertoric varieties, Lett. Math. Phys. 103 (2013) 1273 | DOI

[31] I M Musson, M Van Den Bergh, Invariants under tori of rings of differential operators and related topics, 650, Amer. Math. Soc. (1998) | DOI

[32] H Nakajima, Towards a mathematical definition of Coulomb branches of 3–dimensional N = 4 gauge theories, I, Adv. Theor. Math. Phys. 20 (2016) 595 | DOI

[33] N J Proudfoot, A survey of hypertoric geometry and topology, from: "Toric topology" (editors M Harada, Y Karshon, M Masuda, T Panov), Contemp. Math. 460, Amer. Math. Soc. (2008) 323 | DOI

[34] M Saito, A young person’s guide to mixed Hodge modules, from: "Hodge theory and –analysis" (editor L Ji), Adv. Lect. Math. 39, International (2017) 517

[35] T J Stadnik Jr., Étale splittings of certain Azumaya algebras on toric and hypertoric varieties in positive characteristic, Adv. Math. 233 (2013) 268 | DOI

[36] B Webster, Coherent sheaves and quantum Coulomb branches, I: Tilting bundles from integrable systems, preprint (2019)

[37] B Webster, Coherent sheaves and quantum Coulomb branches, II: Quiver gauge theories and knot homology, preprint (2022)

Cité par Sources :