Homological invariants of codimension 2 contact submanifolds
Geometry & topology, Tome 28 (2024) no. 1, pp. 1-125.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Codimension 2 contact submanifolds are the natural generalization of transverse knots to contact manifolds of arbitrary dimension. We construct new invariants of codimension 2 contact submanifolds. Our main invariant can be viewed as a deformation of the contact homology algebra of the ambient manifold. We describe various applications of these invariants to contact topology. In particular, we exhibit examples of codimension 2 contact embeddings into overtwisted and tight contact manifolds which are formally isotopic but fail to be isotopic through contact embeddings. We also give new obstructions to certain relative symplectic and Lagrangian cobordisms.

DOI : 10.2140/gt.2024.28.1
Keywords: codimension 2 contact submanifolds, contact homology

Côté, Laurent 1 ; Fauteux-Chapleau, François-Simon 2

1 Department of Mathematics, Harvard University, Cambridge, MA, United States
2 Department of Mathematics, Stanford University, Stanford, CA, United States
@article{GT_2024_28_1_a0,
     author = {C\^ot\'e, Laurent and Fauteux-Chapleau, Fran\c{c}ois-Simon},
     title = {Homological invariants of codimension 2 contact submanifolds},
     journal = {Geometry & topology},
     pages = {1--125},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2024},
     doi = {10.2140/gt.2024.28.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1/}
}
TY  - JOUR
AU  - Côté, Laurent
AU  - Fauteux-Chapleau, François-Simon
TI  - Homological invariants of codimension 2 contact submanifolds
JO  - Geometry & topology
PY  - 2024
SP  - 1
EP  - 125
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1/
DO  - 10.2140/gt.2024.28.1
ID  - GT_2024_28_1_a0
ER  - 
%0 Journal Article
%A Côté, Laurent
%A Fauteux-Chapleau, François-Simon
%T Homological invariants of codimension 2 contact submanifolds
%J Geometry & topology
%D 2024
%P 1-125
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1/
%R 10.2140/gt.2024.28.1
%F GT_2024_28_1_a0
Côté, Laurent; Fauteux-Chapleau, François-Simon. Homological invariants of codimension 2 contact submanifolds. Geometry & topology, Tome 28 (2024) no. 1, pp. 1-125. doi : 10.2140/gt.2024.28.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2024.28.1/

[1] R Abraham, Bumpy metrics, from: "Global analysis" (editors S s Chern, S Smale), Proc. Sympos. Pure Math. XIV, Amer. Math. Soc. (1970) 1 | DOI

[2] P Albers, B Bramham, C Wendl, On nonseparating contact hypersurfaces in symplectic 4–manifolds, Algebr. Geom. Topol. 10 (2010) 697 | DOI

[3] M R R Alves, A Pirnapasov, Reeb orbits that force topological entropy, Ergodic Theory Dynam. Systems 42 (2022) 3025 | DOI

[4] E Bao, K Honda, Definition of cylindrical contact homology in dimension three, J. Topol. 11 (2018) 1002 | DOI

[5] M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 | DOI

[6] F Bourgeois, A Morse–Bott approach to contact homology, PhD thesis, Stanford University (2002)

[7] F Bourgeois, T Ekholm, Y Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI

[8] F Bourgeois, O Van Koert, Contact homology of left-handed stabilizations and plumbing of open books, Commun. Contemp. Math. 12 (2010) 223 | DOI

[9] J Bowden, Two-dimensional foliations on four-manifolds, PhD thesis, Ludwig Maximilian University of Munich (2010)

[10] R Casals, J B Etnyre, Non-simplicity of isocontact embeddings in all higher dimensions, Geom. Funct. Anal. 30 (2020) 1 | DOI

[11] R Casals, E Murphy, Legendrian fronts for affine varieties, Duke Math. J. 168 (2019) 225 | DOI

[12] R Casals, E Murphy, F Presas, Geometric criteria for overtwistedness, J. Amer. Math. Soc. 32 (2019) 563 | DOI

[13] R Casals, D M Pancholi, F Presas, The Legendrian Whitney trick, Geom. Topol. 25 (2021) 3229 | DOI

[14] B Chantraine, Lagrangian concordance of Legendrian knots, Algebr. Geom. Topol. 10 (2010) 63 | DOI

[15] B Chantraine, G Dimitroglou Rizell, P Ghiggini, R Golovko, Floer theory for Lagrangian cobordisms, J. Differential Geom. 114 (2020) 393 | DOI

[16] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI

[17] A Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985) 257

[18] M Dörner, H Geiges, K Zehmisch, Open books and the Weinstein conjecture, Q. J. Math. 65 (2014) 869 | DOI

[19] T Ekholm, Rational SFT, linearized Legendrian contact homology, and Lagrangian Floer cohomology, from: "Perspectives in analysis, geometry, and topology" (editors I Itenberg, B Jöricke, M Passare), Progr. Math. 296, Springer (2012) 109 | DOI

[20] T Ekholm, Holomorphic curves for Legendrian surgery, preprint (2019)

[21] T Ekholm, J Etnyre, L Ng, M Sullivan, Filtrations on the knot contact homology of transverse knots, Math. Ann. 355 (2013) 1561 | DOI

[22] T Ekholm, J B Etnyre, L Ng, M G Sullivan, Knot contact homology, Geom. Topol. 17 (2013) 975 | DOI

[23] T Ekholm, K Honda, T Kálmán, Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. 18 (2016) 2627 | DOI

[24] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, from: "Visions in mathematics: GAFA 2000 special volume, II" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Birkhäuser (2000) 560 | DOI

[25] Y Eliashberg, N Mishachev, Introduction to the h–principle, 48, Amer. Math. Soc. (2002) | DOI

[26] Y Eliashberg, E Murphy, Lagrangian caps, Geom. Funct. Anal. 23 (2013) 1483 | DOI

[27] J B Etnyre, L L Ng, Legendrian contact homology in R3, from: "Surveys in differential geometry 2020 : surveys in –manifold topology and geometry" (editors I Agol, D Gabai), Surv. Differ. Geom. 25, International ([2022] ©2022) 103 | DOI

[28] J B Etnyre, D S Vela-Vick, Torsion and open book decompositions, Int. Math. Res. Not. 2010 (2010) 4385 | DOI

[29] H Geiges, An introduction to contact topology, 109, Cambridge Univ. Press (2008) | DOI

[30] M Gerstenhaber, C W Wilkerson, On the deformation of rings and algebras, V : Deformation of differential graded algebras, from: "Higher homotopy structures in topology and mathematical physics" (editor J McCleary), Contemp. Math. 227, Amer. Math. Soc. (1999) 89 | DOI

[31] E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. (2002) 405

[32] P Griffiths, J Morgan, Rational homotopy theory and differential forms, 16, Springer (2013) | DOI

[33] J Gutt, The Conley–Zehnder index for a path of symplectic matrices, preprint (2012)

[34] V Hinich, Homological algebra of homotopy algebras, Comm. Algebra 25 (1997) 3291 | DOI

[35] P S Hirschhorn, Model categories and their localizations, 99, Amer. Math. Soc. (2003) | DOI

[36] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory, I : A splicing-based differential geometry, J. Eur. Math. Soc. 9 (2007) 841 | DOI

[37] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory, II : Implicit function theorems, Geom. Funct. Anal. 19 (2009) 206 | DOI

[38] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory, III : Fredholm functors and polyfolds, Geom. Topol. 13 (2009) 2279 | DOI

[39] K Honda, Y Huang, Convex hypersurface theory in contact topology, preprint (2019)

[40] U Hryniewicz, A Momin, P A S Salomão, A Poincaré–Birkhoff theorem for tight Reeb flows on S3, Invent. Math. 199 (2015) 333 | DOI

[41] M Hutchings, Mean action and the Calabi invariant, J. Mod. Dyn. 10 (2016) 511 | DOI

[42] M Hutchings, J Nelson, Cylindrical contact homology for dynamically convex contact forms in three dimensions, J. Symplectic Geom. 14 (2016) 983 | DOI

[43] P J Kahn, Obstructions to extending almost X–structures, Illinois J. Math. 13 (1969) 336

[44] W Klingenberg, Lectures on closed geodesics, 230, Springer (1978) | DOI

[45] M Klukas, Open books and exact symplectic cobordisms, Internat. J. Math. 29 (2018) 1850026, 19 | DOI

[46] O Van Koert, Lecture notes on stabilization of contact open books, Münster J. Math. 10 (2017) 425 | DOI

[47] A Lazarev, M Markl, Disconnected rational homotopy theory, Adv. Math. 283 (2015) 303 | DOI

[48] O Lazarev, Maximal contact and symplectic structures, J. Topol. 13 (2020) 1058 | DOI

[49] W Li, Lagrangian cobordism functor in microlocal sheaf theory, I, J. Topol. 16 (2023) 1113 | DOI

[50] J L Loday, Cyclic homology, 301, Springer (1998) | DOI

[51] J L Loday, B Vallette, Algebraic operads, 346, Springer (2012) | DOI

[52] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Univ. Press (2017) | DOI

[53] A Momin, Contact homology of orbit complements and implied existence, J. Mod. Dyn. 5 (2011) 409 | DOI

[54] A Moreno, R Siefring, Holomorphic curves in the presence of holomorphic hypersurface foliations, preprint (2019)

[55] E Murphy, Loose Legendrian embeddings in high dimensional contact manifolds, preprint (2019)

[56] L Ng, Framed knot contact homology, Duke Math. J. 141 (2008) 365 | DOI

[57] L Ng, A topological introduction to knot contact homology, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 485 | DOI

[58] L Ng, D Rutherford, V Shende, S Sivek, E Zaslow, Augmentations are sheaves, Geom. Topol. 24 (2020) 2149 | DOI

[59] D M Pancholi, S Pandit, Iso-contact embeddings of manifolds in codimension 2, J. Symplectic Geom. 20 (2022) 471 | DOI

[60] J Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol. 20 (2016) 779 | DOI

[61] J Pardon, Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825 | DOI

[62] A Ranicki, High-dimensional knot theory : algebraic surgery in codimension 2, Springer (1998) | DOI

[63] J M Sabloff, L Traynor, Obstructions to Lagrangian cobordisms between Legendrians via generating families, Algebr. Geom. Topol. 13 (2013) 2733 | DOI

[64] R Siefring, Intersection theory of punctured pseudoholomorphic curves, Geom. Topol. 15 (2011) 2351 | DOI

[65] I Ustilovsky, Contact homology and contact structures on S4m+1, PhD thesis, Stanford University (1999)

[66] B Vallette, Homotopy theory of homotopy algebras, Ann. Inst. Fourier (Grenoble) 70 (2020) 683 | DOI

[67] C Wendl, A hierarchy of local symplectic filling obstructions for contact 3–manifolds, Duke Math. J. 162 (2013) 2197 | DOI

[68] C Wendl, Lectures on symplectic field theory, preprint (2016)

[69] C Wendl, Lectures on contact 3–manifolds, holomorphic curves and intersection theory, 220, Cambridge Univ. Press (2020) | DOI

[70] Z Zhou, Infinite not contact isotopic embeddings in (S2n−1,ξstd) for n ≥ 4, Bull. Lond. Math. Soc. 55 (2023) 149 | DOI

Cité par Sources :