Combinatorial Reeb dynamics on punctured contact 3–manifolds
Geometry & topology, Tome 27 (2023) no. 3, pp. 953-1082.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Λ± = Λ+ Λ (3,ξstd) be a contact surgery diagram determining a closed, connected contact 3–manifold (SΛ±3,ξΛ±) and an open contact manifold (Λ±3,ξΛ±). Following work of Bourgeois, Ekholm and Eliashberg, we demonstrate how Λ± determines a family α𝜖 of contact forms for (Λ±3,ξΛ±) whose closed Reeb orbits are in one-to-one correspondence with cyclic words of composable Reeb chords on Λ±. We compute the homology classes and integral Conley–Zehnder indices of these orbits diagrammatically and develop algebraic tools for studying holomorphic curves in surgery cobordisms between the (Λ±3,ξΛ±).

These new techniques are used to describe the first known examples of closed, tight contact manifolds with vanishing contact homology: they are contact 1k surgeries along the right-handed, tb = 1 trefoil for k > 0, which are known to have nonzero Heegaard Floer contact classes by work of Lisca and Stipsicz.

DOI : 10.2140/gt.2023.27.953
Keywords: contact surgery, contact homology, Legendrian knot

Avdek, Russell 1

1 Department of Mathematics, Uppsala University, Uppsala, Sweden
@article{GT_2023_27_3_a2,
     author = {Avdek, Russell},
     title = {Combinatorial {Reeb} dynamics on punctured contact 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {953--1082},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2023},
     doi = {10.2140/gt.2023.27.953},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.953/}
}
TY  - JOUR
AU  - Avdek, Russell
TI  - Combinatorial Reeb dynamics on punctured contact 3–manifolds
JO  - Geometry & topology
PY  - 2023
SP  - 953
EP  - 1082
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.953/
DO  - 10.2140/gt.2023.27.953
ID  - GT_2023_27_3_a2
ER  - 
%0 Journal Article
%A Avdek, Russell
%T Combinatorial Reeb dynamics on punctured contact 3–manifolds
%J Geometry & topology
%D 2023
%P 953-1082
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.953/
%R 10.2140/gt.2023.27.953
%F GT_2023_27_3_a2
Avdek, Russell. Combinatorial Reeb dynamics on punctured contact 3–manifolds. Geometry & topology, Tome 27 (2023) no. 3, pp. 953-1082. doi : 10.2140/gt.2023.27.953. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.953/

[1] L V Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one complex variable, McGraw-Hill (1978)

[2] R Avdek, Contact surgery and supporting open books, Algebr. Geom. Topol. 13 (2013) 1613 | DOI

[3] E Bao, K Honda, Definition of cylindrical contact homology in dimension three, J. Topol. 11 (2018) 1002 | DOI

[4] E Bao, K Honda, Semi-global Kuranishi charts and the definition of contact homology, Adv. Math. 414 (2023) | DOI

[5] F Bourgeois, A Morse–Bott approach to contact homology, PhD thesis, Stanford University (2002)

[6] F Bourgeois, Introduction to contact homology, lecture notes (2003)

[7] F Bourgeois, T Ekholm, Y Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI

[8] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI

[9] F Bourgeois, K Niederkrüger, Towards a good definition of algebraically overtwisted, Expo. Math. 28 (2010) 85 | DOI

[10] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441 | DOI

[11] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI

[12] K Cieliebak, J Latschev, The role of string topology in symplectic field theory, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 113 | DOI

[13] V Colin, P Ghiggini, K Honda, Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, Proc. Natl. Acad. Sci. USA 108 (2011) 8100 | DOI

[14] V Colin, P Ghiggini, K Honda, M Hutchings, Sutures and contact homology I, Geom. Topol. 15 (2011) 1749 | DOI

[15] J Conway, J B Etnyre, B Tosun, Symplectic fillings, contact surgeries, and Lagrangian disks, Int. Math. Res. Not. 2021 (2021) 6020 | DOI

[16] F Ding, H Geiges, A Legendrian surgery presentation of contact 3–manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004) 583 | DOI

[17] T Ekholm, Rational symplectic field theory over Z2 for exact Lagrangian cobordisms, J. Eur. Math. Soc. 10 (2008) 641 | DOI

[18] T Ekholm, Holomorphic curves for Legendrian surgery, preprint (2019)

[19] T Ekholm, J Etnyre, M Sullivan, The contact homology of Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 177

[20] T Ekholm, L Ng, Legendrian contact homology in the boundary of a subcritical Weinstein 4–manifold, J. Differential Geom. 101 (2015) 67

[21] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 | DOI

[22] Y Eliashberg, On symplectic manifolds with some contact properties, J. Differential Geom. 33 (1991) 233

[23] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, from: "Visions in mathematics" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Birkhäuser (= GAFA special volume) (2000) 560 | DOI

[24] J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 105 | DOI

[25] J B Etnyre, K Honda, Knots and contact geometry, I : Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63 | DOI

[26] J B Etnyre, L L Ng, Legendrian contact homology in R3, from: "Surveys in differential geometry 2020 : surveys in –manifold topology and geometry" (editors I Agol, D Gabai), Surv. Differ. Geom. 25, International (2022) 103 | DOI

[27] J B Etnyre, B Ozbagci, Invariants of contact structures from open books, Trans. Amer. Math. Soc. 360 (2008) 3133 | DOI

[28] O Fabert, Obstruction bundles over moduli spaces with boundary and the action filtration in symplectic field theory, Math. Z. 269 (2011) 325 | DOI

[29] P Foulon, B Hasselblatt, Contact Anosov flows on hyperbolic 3–manifolds, Geom. Topol. 17 (2013) 1225 | DOI

[30] H Geiges, K Zehmisch, How to recognize a 4–ball when you see one, Münster J. Math. 6 (2013) 525 | DOI

[31] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI

[32] M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI

[33] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[34] R Hind, Stein fillings of lens spaces, Commun. Contemp. Math. 5 (2003) 967 | DOI

[35] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515 | DOI

[36] K Honda, On the classification of tight contact structures, II, J. Differential Geom. 55 (2000) 83

[37] K Honda, Gluing tight contact structures, Duke Math. J. 115 (2002) 435 | DOI

[38] K Honda, W H Kazez, G Matić, On the contact class in Heegaard Floer homology, J. Differential Geom. 83 (2009) 289

[39] Y Huang, A proof of the classification theorem of overtwisted contact structures via convex surface theory, J. Symplectic Geom. 11 (2013) 563 | DOI

[40] M Hutchings, Lecture notes on embedded contact homology, from: "Contact and symplectic topology" (editors F Bourgeois, V Colin, A Stipsicz), Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc. (2014) 389 | DOI

[41] M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, I, J. Symplectic Geom. 5 (2007) 43 | DOI

[42] Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 | DOI

[43] P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact three-manifolds, I, Geom. Topol. 8 (2004) 925 | DOI

[44] D Mcduff, The structure of rational and ruled symplectic 4–manifolds, J. Amer. Math. Soc. 3 (1990) 679 | DOI

[45] D Mcduff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991) 651 | DOI

[46] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Univ. Press (1998)

[47] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) | DOI

[48] A Moreno, Z Zhou, A landscape of contact manifolds via rational SFT, preprint (2020)

[49] L L Ng, Computable Legendrian invariants, Topology 42 (2003) 55 | DOI

[50] L Ng, Rational symplectic field theory for Legendrian knots, Invent. Math. 182 (2010) 451 | DOI

[51] B Ozbagci, A note on contact surgery diagrams, Internat. J. Math. 16 (2005) 87 | DOI

[52] B Ozbagci, A I Stipsicz, Surgery on contact 3–manifolds and Stein surfaces, 13, Springer (2004) 281 | DOI

[53] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 | DOI

[54] J Pardon, Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825 | DOI

[55] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827 | DOI

[56] J Rooney, Cobordism maps in embedded contact homology, preprint (2019)

[57] L Rudolph, The slice genus and the Thurston–Bennequin invariant of a knot, Proc. Amer. Math. Soc. 125 (1997) 3049 | DOI

[58] M Schwarz, Cohomology operations from S1 cobordisms in Floer homology, PhD thesis, ETH Zurich (1995) | DOI

[59] P Seidel, A biased view of symplectic cohomology, from: "Current developments in mathematics, 2006" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2008) 211

[60] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241 | DOI

[61] C Wendl, Strongly fillable contact manifolds and J–holomorphic foliations, Duke Math. J. 151 (2010) 337 | DOI

[62] C Wendl, Non-exact symplectic cobordisms between contact 3–manifolds, J. Differential Geom. 95 (2013) 121

[63] C Wendl, Signs (or how to annoy a symplectic topologist), blog post (2015)

[64] C Wendl, Lectures on symplectic field theory, preprint (2016)

[65] M L Yau, Vanishing of the contact homology of overtwisted contact 3–manifolds, Bull. Inst. Math. Acad. Sin. 1 (2006) 211

Cité par Sources :