Cabling in terms of immersed curves
Geometry & topology, Tome 27 (2023) no. 3, pp. 925-952.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In joint work with J Rasmussen (Proc. Lond. Math. Soc. (3) 125 (2022) 879–967), we gave an interpretation of Heegaard Floer homology for manifolds with torus boundary in terms of immersed curves in a punctured torus. In particular, knot Floer homology is captured by this invariant (arXiv 1810.10355). Appealing to earlier work of the authors on bordered Floer homology (Geom. Topol. 27 (2023) 823–924), we give a formula for the behaviour of these immersed curves under cabling.

DOI : 10.2140/gt.2023.27.925
Classification : 57M25, 57M27
Keywords: knot Floer homology, bordered Heegaard Floer homology, immersed curves, cabling, concordance

Hanselman, Jonathan 1 ; Watson, Liam 2

1 Department of Mathematics, Princeton University, Princeton, NJ, United States
2 Department of Mathematics, University of British Columbia, Vancouver BC, Canada
@article{GT_2023_27_3_a1,
     author = {Hanselman, Jonathan and Watson, Liam},
     title = {Cabling in terms of immersed curves},
     journal = {Geometry & topology},
     pages = {925--952},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2023},
     doi = {10.2140/gt.2023.27.925},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.925/}
}
TY  - JOUR
AU  - Hanselman, Jonathan
AU  - Watson, Liam
TI  - Cabling in terms of immersed curves
JO  - Geometry & topology
PY  - 2023
SP  - 925
EP  - 952
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.925/
DO  - 10.2140/gt.2023.27.925
ID  - GT_2023_27_3_a1
ER  - 
%0 Journal Article
%A Hanselman, Jonathan
%A Watson, Liam
%T Cabling in terms of immersed curves
%J Geometry & topology
%D 2023
%P 925-952
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.925/
%R 10.2140/gt.2023.27.925
%F GT_2023_27_3_a1
Hanselman, Jonathan; Watson, Liam. Cabling in terms of immersed curves. Geometry & topology, Tome 27 (2023) no. 3, pp. 925-952. doi : 10.2140/gt.2023.27.925. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.925/

[1] I Dai, J Hom, M Stoffregen, L Truong, More concordance homomorphisms from knot Floer homology, Geom. Topol. 25 (2021) 275 | DOI

[2] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) 357

[3] J Hanselman, Bordered Heegaard Floer homology and graph manifolds, Algebr. Geom. Topol. 16 (2016) 3103 | DOI

[4] J Hanselman, J Rasmussen, L Watson, Bordered Floer homology for manifolds with torus boundary via immersed curves, preprint (2016)

[5] J Hanselman, J Rasmussen, L Watson, Heegaard Floer homology for manifolds with torus boundary : properties and examples, Proc. Lond. Math. Soc. (3) 125 (2022) 879 | DOI

[6] J Hanselman, L Watson, A calculus for bordered Floer homology, Geom. Topol. 27 (2023) 823 | DOI

[7] M Hedden, On knot Floer homology and cabling, PhD thesis, Columbia University (2005)

[8] M Hedden, On knot Floer homology and cabling, Algebr. Geom. Topol. 5 (2005) 1197 | DOI

[9] M Hedden, On knot Floer homology and cabling, II, Int. Math. Res. Not. 2009 (2009) 2248 | DOI

[10] J Hom, A note on cabling and L–space surgeries, Algebr. Geom. Topol. 11 (2011) 219 | DOI

[11] J Hom, Bordered Heegaard Floer homology and the tau-invariant of cable knots, J. Topol. 7 (2014) 287 | DOI

[12] J Hom, A survey on Heegaard Floer homology and concordance, J. Knot Theory Ramifications 26 (2017) | DOI

[13] A S Levine, Knot doubling operators and bordered Heegaard Floer homology, J. Topol. 5 (2012) 651 | DOI

[14] R Lipshitz, P S Ozsváth, D P Thurston, Bimodules in bordered Heegaard Floer homology, Geom. Topol. 19 (2015) 525 | DOI

[15] R Lipshitz, P S Ozsvath, D P Thurston, Bordered Heegaard Floer homology, 1216, Amer. Math. Soc. (2018) | DOI

[16] L Mosher, What is a train track?, Notices Amer. Math. Soc. 50 (2003) 354

[17] P S Ozsváth, A I Stipsicz, Z Szabó, Concordance homomorphisms from knot Floer homology, Adv. Math. 315 (2017) 366 | DOI

[18] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58 | DOI

[19] I Petkova, Cables of thin knots and bordered Heegaard Floer homology, Quantum Topol. 4 (2013) 377 | DOI

[20] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[21] C A Van Cott, Ozsváth–Szabó and Rasmussen invariants of cable knots, Algebr. Geom. Topol. 10 (2010) 825 | DOI

Cité par Sources :