Odd primary analogs of real orientations
Geometry & topology, Tome 27 (2023) no. 1, pp. 87-129.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define, in Cp–equivariant homotopy theory for p > 2, a notion of μp–orientation analogous to a C2–equivariant Real orientation. The definition hinges on a Cp–space μp, which we prove to be homologically even, in a sense generalizing recent C2–equivariant work on conjugation spaces.

We prove that the height p 1 Morava E–theory is μp–oriented and that tmf(2) is μ3–oriented. We explain how a single equivariant map v1μp: S2ρ Σμ p completely generates the homotopy of Ep1 and tmf(2), expressing a height-shifting phenomenon pervasive in equivariant chromatic homotopy theory.

DOI : 10.2140/gt.2023.27.87
Keywords: chromatic homotopy theory, equivariant

Hahn, Jeremy 1 ; Senger, Andrew 1 ; Wilson, Dylan 2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, United States
2 Department of Mathematics, Harvard University, Cambridge, MA, United States
@article{GT_2023_27_1_a2,
     author = {Hahn, Jeremy and Senger, Andrew and Wilson, Dylan},
     title = {Odd primary analogs of real orientations},
     journal = {Geometry & topology},
     pages = {87--129},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     doi = {10.2140/gt.2023.27.87},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.87/}
}
TY  - JOUR
AU  - Hahn, Jeremy
AU  - Senger, Andrew
AU  - Wilson, Dylan
TI  - Odd primary analogs of real orientations
JO  - Geometry & topology
PY  - 2023
SP  - 87
EP  - 129
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.87/
DO  - 10.2140/gt.2023.27.87
ID  - GT_2023_27_1_a2
ER  - 
%0 Journal Article
%A Hahn, Jeremy
%A Senger, Andrew
%A Wilson, Dylan
%T Odd primary analogs of real orientations
%J Geometry & topology
%D 2023
%P 87-129
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.87/
%R 10.2140/gt.2023.27.87
%F GT_2023_27_1_a2
Hahn, Jeremy; Senger, Andrew; Wilson, Dylan. Odd primary analogs of real orientations. Geometry & topology, Tome 27 (2023) no. 1, pp. 87-129. doi : 10.2140/gt.2023.27.87. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.87/

[1] G Almkvist, R Fossum, Decomposition of exterior and symmetric powers of indecomposable Z∕pZ–modules in characteristic p and relations to invariants, from: "Séminaire d’Algèbre Paul Dubreil, 30ème année" (editor M Malliavin), Lecture Notes in Math. 641, Springer (1978) 1 | DOI

[2] S Araki, M Murayama, τ–cohomology theories, Japan. J. Math. 4 (1978) 363 | DOI

[3] A Beaudry, I Bobkova, M Hill, V Stojanoska, Invertible K(2)–local E–modules in C4–spectra, Algebr. Geom. Topol. 20 (2020) 3423 | DOI

[4] A Beaudry, M A Hill, X D Shi, M Zeng, Models of Lubin–Tate spectra via real bordism theory, Adv. Math. 392 (2021) | DOI

[5] P Bhattacharya, H Chatham, On the EO–orientability of vector bundles, preprint (2020)

[6] P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151 | DOI

[7] V Gorbounov, M Mahowald, Formal completion of the Jacobians of plane curves and higher real K–theories, J. Pure Appl. Algebra 145 (2000) 293 | DOI

[8] J P C Greenlees, L Meier, Gorenstein duality for real spectra, Algebr. Geom. Topol. 17 (2017) 3547 | DOI

[9] J Hahn, X D Shi, Real orientations of Lubin–Tate spectra, Invent. Math. 221 (2020) 731 | DOI

[10] D Heard, G Li, X D Shi, Picard groups and duality for real Morava E–theories, Algebr. Geom. Topol. 21 (2021) 2703 | DOI

[11] D Heard, A Mathew, V Stojanoska, Picard groups of higher real K–theory spectra at height p − 1, Compos. Math. 153 (2017) 1820 | DOI

[12] M A Hill, Computational methods for higher real K–theory with applications to tmf, PhD thesis, Massachusetts Institute of Technology (2006)

[13] M A Hill, Freeness and equivariant stable homotopy, J. Topol. 15 (2022) 359 | DOI

[14] M A Hill, M J Hopkins, Equivariant symmetric monoidal structures, preprint (2016)

[15] M A Hill, M J Hopkins, Real Wilson spaces, I, preprint (2018)

[16] M A Hill, M J Hopkins, D C Ravenel, On the 3–primary Arf–Kervaire invariant problem, unpublished note (2011)

[17] M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 | DOI

[18] M Hill, T Lawson, Topological modular forms with level structure, Invent. Math. 203 (2016) 359 | DOI

[19] M A Hill, L Meier, The C2–spectrum Tmf1(3) and its invertible modules, Algebr. Geom. Topol. 17 (2017) 1953 | DOI

[20] M A Hill, X D Shi, G Wang, Z Xu, The slice spectral sequence of a C4–equivariant height-4 Lubin–Tate theory, preprint (2018)

[21] M A Hill, C Yarnall, A new formulation of the equivariant slice filtration with applications to Cp–slices, Proc. Amer. Math. Soc. 146 (2018) 3605 | DOI

[22] P Hu, I Kriz, Real-oriented homotopy theory and an analogue of the Adams–Novikov spectral sequence, Topology 40 (2001) 317 | DOI

[23] N Kitchloo, V Lorman, W S Wilson, Landweber flat real pairs and ER(n)–cohomology, Adv. Math. 322 (2017) 60 | DOI

[24] T Y Lam, A first course in noncommutative rings, 131, Springer (2001) | DOI

[25] G Li, V Lorman, J D Quigley, Tate blueshift and vanishing for real oriented cohomology theories, Adv. Math. 411 (2022) | DOI

[26] G Li, X D Shi, G Wang, Z Xu, Hurewicz images of real bordism theory and real Johnson–Wilson theories, Adv. Math. 342 (2019) 67 | DOI

[27] J Lurie, Elliptic cohomology, II : Orientations, preprint (2018)

[28] L Meier, X D Shi, M Zeng, The localized slice spectral sequence, norms of Real bordism, and the Segal conjecture, Adv. Math. 412 (2023) | DOI

[29] J Milnor, On the cobordism ring Ω∗ and a complex analogue, I, Amer. J. Math. 82 (1960) 505 | DOI

[30] J Morava, Forms of K–theory, Math. Z. 201 (1989) 401 | DOI

[31] R E Mosher, Some stable homotopy of complex projective space, Topology 7 (1968) 179 | DOI

[32] L S Nave, The Smith–Toda complex V ((p + 1)∕2) does not exist, Ann. of Math. 171 (2010) 491 | DOI

[33] W Pitsch, N Ricka, J Scherer, Conjugation spaces are cohomologically pure, Proc. Lond. Math. Soc. 123 (2021) 313 | DOI

[34] D Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969) 1293 | DOI

[35] D C Ravenel, The nonexistence of odd primary Arf invariant elements in stable homotopy, Math. Proc. Cambridge Philos. Soc. 83 (1978) 429 | DOI

[36] J P Serre, Local class field theory, from: "Algebraic Number Theory" (editors J W S Cassels, A Fröhlich), Thompson (1967) 128

[37] J H Silverman, The arithmetic of elliptic curves, 106, Springer (2009) | DOI

[38] V Stojanoska, Duality for topological modular forms, Doc. Math. 17 (2012) 271 | DOI

[39] D Wilson, Equivariant, parameterized, and chromatic homotopy theory, PhD thesis, Northwestern University (2017)

[40] D Wilson, On categories of slices, preprint (2017)

Cité par Sources :