Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define, in –equivariant homotopy theory for , a notion of –orientation analogous to a –equivariant Real orientation. The definition hinges on a –space , which we prove to be homologically even, in a sense generalizing recent –equivariant work on conjugation spaces.
We prove that the height Morava –theory is –oriented and that is –oriented. We explain how a single equivariant map completely generates the homotopy of and , expressing a height-shifting phenomenon pervasive in equivariant chromatic homotopy theory.
Hahn, Jeremy 1 ; Senger, Andrew 1 ; Wilson, Dylan 2
@article{GT_2023_27_1_a2, author = {Hahn, Jeremy and Senger, Andrew and Wilson, Dylan}, title = {Odd primary analogs of real orientations}, journal = {Geometry & topology}, pages = {87--129}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2023}, doi = {10.2140/gt.2023.27.87}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.87/} }
TY - JOUR AU - Hahn, Jeremy AU - Senger, Andrew AU - Wilson, Dylan TI - Odd primary analogs of real orientations JO - Geometry & topology PY - 2023 SP - 87 EP - 129 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.87/ DO - 10.2140/gt.2023.27.87 ID - GT_2023_27_1_a2 ER -
Hahn, Jeremy; Senger, Andrew; Wilson, Dylan. Odd primary analogs of real orientations. Geometry & topology, Tome 27 (2023) no. 1, pp. 87-129. doi : 10.2140/gt.2023.27.87. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.87/
[1] Decomposition of exterior and symmetric powers of indecomposable Z∕pZ–modules in characteristic p and relations to invariants, from: "Séminaire d’Algèbre Paul Dubreil, 30ème année" (editor M Malliavin), Lecture Notes in Math. 641, Springer (1978) 1 | DOI
, ,[2] τ–cohomology theories, Japan. J. Math. 4 (1978) 363 | DOI
, ,[3] Invertible K(2)–local E–modules in C4–spectra, Algebr. Geom. Topol. 20 (2020) 3423 | DOI
, , , ,[4] Models of Lubin–Tate spectra via real bordism theory, Adv. Math. 392 (2021) | DOI
, , , ,[5] On the EO–orientability of vector bundles, preprint (2020)
, ,[6] Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151 | DOI
, ,[7] Formal completion of the Jacobians of plane curves and higher real K–theories, J. Pure Appl. Algebra 145 (2000) 293 | DOI
, ,[8] Gorenstein duality for real spectra, Algebr. Geom. Topol. 17 (2017) 3547 | DOI
, ,[9] Real orientations of Lubin–Tate spectra, Invent. Math. 221 (2020) 731 | DOI
, ,[10] Picard groups and duality for real Morava E–theories, Algebr. Geom. Topol. 21 (2021) 2703 | DOI
, , ,[11] Picard groups of higher real K–theory spectra at height p − 1, Compos. Math. 153 (2017) 1820 | DOI
, , ,[12] Computational methods for higher real K–theory with applications to tmf, PhD thesis, Massachusetts Institute of Technology (2006)
,[13] Freeness and equivariant stable homotopy, J. Topol. 15 (2022) 359 | DOI
,[14] Equivariant symmetric monoidal structures, preprint (2016)
, ,[15] Real Wilson spaces, I, preprint (2018)
, ,[16] On the 3–primary Arf–Kervaire invariant problem, unpublished note (2011)
, , ,[17] On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 | DOI
, , ,[18] Topological modular forms with level structure, Invent. Math. 203 (2016) 359 | DOI
, ,[19] The C2–spectrum Tmf1(3) and its invertible modules, Algebr. Geom. Topol. 17 (2017) 1953 | DOI
, ,[20] The slice spectral sequence of a C4–equivariant height-4 Lubin–Tate theory, preprint (2018)
, , , ,[21] A new formulation of the equivariant slice filtration with applications to Cp–slices, Proc. Amer. Math. Soc. 146 (2018) 3605 | DOI
, ,[22] Real-oriented homotopy theory and an analogue of the Adams–Novikov spectral sequence, Topology 40 (2001) 317 | DOI
, ,[23] Landweber flat real pairs and ER(n)–cohomology, Adv. Math. 322 (2017) 60 | DOI
, , ,[24] A first course in noncommutative rings, 131, Springer (2001) | DOI
,[25] Tate blueshift and vanishing for real oriented cohomology theories, Adv. Math. 411 (2022) | DOI
, , ,[26] Hurewicz images of real bordism theory and real Johnson–Wilson theories, Adv. Math. 342 (2019) 67 | DOI
, , , ,[27] Elliptic cohomology, II : Orientations, preprint (2018)
,[28] The localized slice spectral sequence, norms of Real bordism, and the Segal conjecture, Adv. Math. 412 (2023) | DOI
, , ,[29] On the cobordism ring Ω∗ and a complex analogue, I, Amer. J. Math. 82 (1960) 505 | DOI
,[30] Forms of K–theory, Math. Z. 201 (1989) 401 | DOI
,[31] Some stable homotopy of complex projective space, Topology 7 (1968) 179 | DOI
,[32] The Smith–Toda complex V ((p + 1)∕2) does not exist, Ann. of Math. 171 (2010) 491 | DOI
,[33] Conjugation spaces are cohomologically pure, Proc. Lond. Math. Soc. 123 (2021) 313 | DOI
, , ,[34] On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969) 1293 | DOI
,[35] The nonexistence of odd primary Arf invariant elements in stable homotopy, Math. Proc. Cambridge Philos. Soc. 83 (1978) 429 | DOI
,[36] Local class field theory, from: "Algebraic Number Theory" (editors J W S Cassels, A Fröhlich), Thompson (1967) 128
,[37] The arithmetic of elliptic curves, 106, Springer (2009) | DOI
,[38] Duality for topological modular forms, Doc. Math. 17 (2012) 271 | DOI
,[39] Equivariant, parameterized, and chromatic homotopy theory, PhD thesis, Northwestern University (2017)
,[40] On categories of slices, preprint (2017)
,Cité par Sources :