Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider a class of manifolds with torus boundary admitting bordered Heegaard Floer homology of a particularly simple form; namely, the type structure may be described graphically by a disjoint union of loops. We develop a calculus for studying bordered invariants of this form and, in particular, provide a complete description of slopes giving rise to –space Dehn fillings as well as necessary and sufficient conditions for –spaces resulting from identifying two such manifolds along their boundaries. As an application, we show that Seifert-fibred spaces with torus boundary fall into this class, leading to a proof that, among graph manifolds containing a single JSJ torus, the property of being an –space is equivalent to non-left-orderability of the fundamental group and to the nonexistence of a coorientable taut foliation.
Hanselman, Jonathan 1 ; Watson, Liam 2
@article{GT_2023_27_3_a0, author = {Hanselman, Jonathan and Watson, Liam}, title = {A calculus for bordered {Floer} homology}, journal = {Geometry & topology}, pages = {823--924}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2023}, doi = {10.2140/gt.2023.27.823}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.823/} }
Hanselman, Jonathan; Watson, Liam. A calculus for bordered Floer homology. Geometry & topology, Tome 27 (2023) no. 3, pp. 823-924. doi : 10.2140/gt.2023.27.823. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.823/
[1] Graph manifold Z–homology 3–spheres and taut foliations, J. Topol. 8 (2015) 571 | DOI
, ,[2] Foliations, orders, representations, L-spaces and graph manifolds, Adv. Math. 310 (2017) 159 | DOI
, ,[3] On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI
, , ,[4] Orderable 3–manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005) 243 | DOI
, , ,[5] Graph manifolds, left-orderability and amalgamation, Algebr. Geom. Topol. 13 (2013) 2347 | DOI
, , ,[6] Floer homology, group orderability, and taut foliations of hyperbolic 3–manifolds, Geom. Topol. 24 (2020) 2075 | DOI
,[7] Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci. 126 (2017) 247 | DOI
, , ,[8] Bordered Heegaard Floer homology and graph manifolds, Algebr. Geom. Topol. 16 (2016) 3103 | DOI
,[9] Splicing integer framed knot complements and bordered Heegaard Floer homology, Quantum Topol. 8 (2017) 715 | DOI
,[10] L-spaces, taut foliations, and graph manifolds, Compos. Math. 156 (2020) 604 | DOI
, , , ,[11] Bordered Floer homology for manifolds with torus boundary via immersed curves, preprint (2016)
, , ,[12] Heegaard Floer homology for manifolds with torus boundary : properties and examples, Proc. Lond. Math. Soc. (3) 125 (2022) 879 | DOI
, , ,[13] Cabling in terms of immersed curves, Geom. Topol. 27 (2023) 925 | DOI
, ,[14] Splicing knot complements and bordered Floer homology, J. Reine Angew. Math. 720 (2016) 129 | DOI
, ,[15] The Alexander module, Seifert forms, and categorification, J. Topol. 10 (2017) 22 | DOI
, , ,[16] Immersed curves in Khovanov homology, preprint (2019)
, , ,[17] Knot doubling operators and bordered Heegaard Floer homology, J. Topol. 5 (2012) 651 | DOI
,[18] Taut foliations in knot complements, Pacific J. Math. 269 (2014) 149 | DOI
, ,[19] Bimodules in bordered Heegaard Floer homology, Geom. Topol. 19 (2015) 525 | DOI
, , ,[20] Bordered Heegaard Floer homology, 1216, Amer. Math. Soc. (2018) | DOI
, , ,[21] On lattice cohomology and left-orderability, preprint (2013)
,[22] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299 | DOI
,[23] On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185 | DOI
, ,[24] Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI
, ,[25] Cables of thin knots and bordered Heegaard Floer homology, Quantum Topol. 4 (2013) 377 | DOI
,[26] The decategorification of bordered Heegaard Floer homology, J. Symplectic Geom. 16 (2018) 227 | DOI
,[27] Floer simple manifolds and L-space intervals, Adv. Math. 322 (2017) 738 | DOI
, ,[28] L-space intervals for graph manifolds and cables, Compos. Math. 153 (2017) 1008 | DOI
,[29] Surgery obstructions from Khovanov homology, Selecta Math. 18 (2012) 417 | DOI
,Cité par Sources :