A calculus for bordered Floer homology
Geometry & topology, Tome 27 (2023) no. 3, pp. 823-924.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider a class of manifolds with torus boundary admitting bordered Heegaard Floer homology of a particularly simple form; namely, the type D structure may be described graphically by a disjoint union of loops. We develop a calculus for studying bordered invariants of this form and, in particular, provide a complete description of slopes giving rise to L–space Dehn fillings as well as necessary and sufficient conditions for L–spaces resulting from identifying two such manifolds along their boundaries. As an application, we show that Seifert-fibred spaces with torus boundary fall into this class, leading to a proof that, among graph manifolds containing a single JSJ torus, the property of being an L–space is equivalent to non-left-orderability of the fundamental group and to the nonexistence of a coorientable taut foliation.

DOI : 10.2140/gt.2023.27.823
Classification : 57M27
Keywords: Heegaard Floer, bordered Floer homology, 3–manifolds, L–space conjecture

Hanselman, Jonathan 1 ; Watson, Liam 2

1 Department of Mathematics, University of Texas at Austin, Austin, TX, United States, Department of Mathematics, Princeton University, Princeton, NJ, United States
2 School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom, Department of Mathematics, University of British Columbia, Vancouver BC, Canada
@article{GT_2023_27_3_a0,
     author = {Hanselman, Jonathan and Watson, Liam},
     title = {A calculus for bordered {Floer} homology},
     journal = {Geometry & topology},
     pages = {823--924},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2023},
     doi = {10.2140/gt.2023.27.823},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.823/}
}
TY  - JOUR
AU  - Hanselman, Jonathan
AU  - Watson, Liam
TI  - A calculus for bordered Floer homology
JO  - Geometry & topology
PY  - 2023
SP  - 823
EP  - 924
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.823/
DO  - 10.2140/gt.2023.27.823
ID  - GT_2023_27_3_a0
ER  - 
%0 Journal Article
%A Hanselman, Jonathan
%A Watson, Liam
%T A calculus for bordered Floer homology
%J Geometry & topology
%D 2023
%P 823-924
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.823/
%R 10.2140/gt.2023.27.823
%F GT_2023_27_3_a0
Hanselman, Jonathan; Watson, Liam. A calculus for bordered Floer homology. Geometry & topology, Tome 27 (2023) no. 3, pp. 823-924. doi : 10.2140/gt.2023.27.823. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.823/

[1] M Boileau, S Boyer, Graph manifold Z–homology 3–spheres and taut foliations, J. Topol. 8 (2015) 571 | DOI

[2] S Boyer, A Clay, Foliations, orders, representations, L-spaces and graph manifolds, Adv. Math. 310 (2017) 159 | DOI

[3] S Boyer, C M Gordon, L Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 | DOI

[4] S Boyer, D Rolfsen, B Wiest, Orderable 3–manifold groups, Ann. Inst. Fourier (Grenoble) 55 (2005) 243 | DOI

[5] A Clay, T Lidman, L Watson, Graph manifolds, left-orderability and amalgamation, Algebr. Geom. Topol. 13 (2013) 2347 | DOI

[6] N M Dunfield, Floer homology, group orderability, and taut foliations of hyperbolic 3–manifolds, Geom. Topol. 24 (2020) 2075 | DOI

[7] F Haiden, L Katzarkov, M Kontsevich, Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci. 126 (2017) 247 | DOI

[8] J Hanselman, Bordered Heegaard Floer homology and graph manifolds, Algebr. Geom. Topol. 16 (2016) 3103 | DOI

[9] J Hanselman, Splicing integer framed knot complements and bordered Heegaard Floer homology, Quantum Topol. 8 (2017) 715 | DOI

[10] J Hanselman, J Rasmussen, S D Rasmussen, L Watson, L-spaces, taut foliations, and graph manifolds, Compos. Math. 156 (2020) 604 | DOI

[11] J Hanselman, J Rasmussen, L Watson, Bordered Floer homology for manifolds with torus boundary via immersed curves, preprint (2016)

[12] J Hanselman, J Rasmussen, L Watson, Heegaard Floer homology for manifolds with torus boundary : properties and examples, Proc. Lond. Math. Soc. (3) 125 (2022) 879 | DOI

[13] J Hanselman, L Watson, Cabling in terms of immersed curves, Geom. Topol. 27 (2023) 925 | DOI

[14] M Hedden, A S Levine, Splicing knot complements and bordered Floer homology, J. Reine Angew. Math. 720 (2016) 129 | DOI

[15] J Hom, T Lidman, L Watson, The Alexander module, Seifert forms, and categorification, J. Topol. 10 (2017) 22 | DOI

[16] A Kotelskiy, L Watson, C Zibrowius, Immersed curves in Khovanov homology, preprint (2019)

[17] A S Levine, Knot doubling operators and bordered Heegaard Floer homology, J. Topol. 5 (2012) 651 | DOI

[18] T Li, R Roberts, Taut foliations in knot complements, Pacific J. Math. 269 (2014) 149 | DOI

[19] R Lipshitz, P S Ozsváth, D P Thurston, Bimodules in bordered Heegaard Floer homology, Geom. Topol. 19 (2015) 525 | DOI

[20] R Lipshitz, P S Ozsvath, D P Thurston, Bordered Heegaard Floer homology, 1216, Amer. Math. Soc. (2018) | DOI

[21] M Mauricio, On lattice cohomology and left-orderability, preprint (2013)

[22] W D Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981) 299 | DOI

[23] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185 | DOI

[24] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI

[25] I Petkova, Cables of thin knots and bordered Heegaard Floer homology, Quantum Topol. 4 (2013) 377 | DOI

[26] I Petkova, The decategorification of bordered Heegaard Floer homology, J. Symplectic Geom. 16 (2018) 227 | DOI

[27] J Rasmussen, S D Rasmussen, Floer simple manifolds and L-space intervals, Adv. Math. 322 (2017) 738 | DOI

[28] S D Rasmussen, L-space intervals for graph manifolds and cables, Compos. Math. 153 (2017) 1008 | DOI

[29] L Watson, Surgery obstructions from Khovanov homology, Selecta Math. 18 (2012) 417 | DOI

Cité par Sources :