Embedded surfaces with infinite cyclic knot group
Geometry & topology, Tome 27 (2023) no. 2, pp. 739-821.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study locally flat, compact, oriented surfaces in 4–manifolds whose exteriors have infinite cyclic fundamental group. We give algebraic topological criteria for two such surfaces, with the same genus g, to be related by an ambient homeomorphism, and further criteria that imply they are ambiently isotopic. Along the way, we provide a classification of a subset of the topological 4–manifolds with infinite cyclic fundamental group, and we apply our results to rim surgery.

DOI : 10.2140/gt.2023.27.739
Keywords: knotted surfaces, 4–manifolds, topological surgery

Conway, Anthony 1 ; Powell, Mark 2

1 Department of Mathematics, Massachussetts Institute of Technology, Cambridge, MA, United States
2 School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
@article{GT_2023_27_2_a5,
     author = {Conway, Anthony and Powell, Mark},
     title = {Embedded surfaces with infinite cyclic knot group},
     journal = {Geometry & topology},
     pages = {739--821},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     doi = {10.2140/gt.2023.27.739},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.739/}
}
TY  - JOUR
AU  - Conway, Anthony
AU  - Powell, Mark
TI  - Embedded surfaces with infinite cyclic knot group
JO  - Geometry & topology
PY  - 2023
SP  - 739
EP  - 821
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.739/
DO  - 10.2140/gt.2023.27.739
ID  - GT_2023_27_2_a5
ER  - 
%0 Journal Article
%A Conway, Anthony
%A Powell, Mark
%T Embedded surfaces with infinite cyclic knot group
%J Geometry & topology
%D 2023
%P 739-821
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.739/
%R 10.2140/gt.2023.27.739
%F GT_2023_27_2_a5
Conway, Anthony; Powell, Mark. Embedded surfaces with infinite cyclic knot group. Geometry & topology, Tome 27 (2023) no. 2, pp. 739-821. doi : 10.2140/gt.2023.27.739. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.739/

[1] H Bass, Unitary algebraic K–theory, from: "Algebraic –theory, III : Hermitian –theory and geometric applications" (editor H Bass), Lecture Notes in Math. 343, Springer (1973) 57 | DOI

[2] R I Baykur, N Sunukjian, Knotted surfaces in 4–manifolds and stabilizations, J. Topol. 9 (2016) 215 | DOI

[3] M Borodzik, S Friedl, On the algebraic unknotting number, Trans. London Math. Soc. 1 (2014) 57 | DOI

[4] M Borodzik, S Friedl, The unknotting number and classical invariants, I, Algebr. Geom. Topol. 15 (2015) 85 | DOI

[5] S Boyer, Simply-connected 4–manifolds with a given boundary, Trans. Amer. Math. Soc. 298 (1986) 331 | DOI

[6] J Boyle, Classifying 1–handles attached to knotted surfaces, Trans. Amer. Math. Soc. 306 (1988) 475 | DOI

[7] G E Bredon, Topology and geometry, 139, Springer (1993) | DOI

[8] T D Cochran, K E Orr, P Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004) 105 | DOI

[9] A Conway, S Friedl, E Toffoli, The Blanchfield pairing of colored links, Indiana Univ. Math. J. 67 (2018) 2151 | DOI

[10] A Conway, M Powell, Characterisation of homotopy ribbon discs, Adv. Math. 391 (2021) | DOI

[11] D J Crowley, The classification of highly connected manifolds in dimensions 7 and 15, PhD thesis, Indiana University (2002)

[12] D Crowley, J Sixt, Stably diffeomorphic manifolds and l2q+1(Z[π]), Forum Math. 23 (2011) 483 | DOI

[13] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) | DOI

[14] R Fintushel, R J Stern, Surfaces in 4–manifolds, Math. Res. Lett. 4 (1997) 907 | DOI

[15] M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990)

[16] S Friedl, C Leidy, M Nagel, M Powell, Twisted Blanchfield pairings and decompositions of 3-manifolds, Homology Homotopy Appl. 19 (2017) 275 | DOI

[17] S Friedl, M Nagel, P Orson, M Powell, A survey of the foundations of four-manifold theory in the topological category, preprint (2019)

[18] S Friedl, M Powell, A calculation of Blanchfield pairings of 3–manifolds and knots, Mosc. Math. J. 17 (2017) 59 | DOI

[19] R E Gompf, A I Stipsicz, 4–Manifolds and Kirby calculus, 20, Amer. Math. Soc. (1999) | DOI

[20] I Hambleton, M Kreck, P Teichner, Topological 4–manifolds with geometrically two-dimensional fundamental groups, J. Topol. Anal. 1 (2009) 123 | DOI

[21] I Hambleton, P Teichner, A non-extended Hermitian form over Z[Z], Manuscripta Math. 93 (1997) 435 | DOI

[22] J A Hillman, A Kawauchi, Unknotting orientable surfaces in the 4–sphere, J. Knot Theory Ramifications 4 (1995) 213 | DOI

[23] J F P Hudson, Embeddings of bounded manifolds, Proc. Cambridge Philos. Soc. 72 (1972) 11 | DOI

[24] A Juhász, M Miller, I Zemke, Transverse invariants and exotic surfaces in the 4–ball, Geom. Topol. 25 (2021) 2963 | DOI

[25] A Juház, I Zemke, Stabilization distance bounds from link Floer homology, preprint (2018)

[26] D Kasprowski, M Powell, P Teichner, Algebraic criteria for stable diffeomorphism of spin 4–manifolds, preprint (2020)

[27] A Kawauchi, Splitting a 4–manifold with infinite cyclic fundamental group, Osaka J. Math. 31 (1994) 489

[28] A Kawauchi, Splitting a 4–manifold with infinite cyclic fundamental group, revised, J. Knot Theory Ramifications 22 (2013) | DOI

[29] Q Khan, Cancellation for 4–manifolds with virtually abelian fundamental group, Topology Appl. 220 (2017) 14 | DOI

[30] H J Kim, Modifying surfaces in 4–manifolds by twist spinning, Geom. Topol. 10 (2006) 27 | DOI

[31] H J Kim, D Ruberman, Smooth surfaces with non-simply-connected complements, Algebr. Geom. Topol. 8 (2008) 2263 | DOI

[32] H J Kim, D Ruberman, Topological triviality of smoothly knotted surfaces in 4–manifolds, Trans. Amer. Math. Soc. 360 (2008) 5869 | DOI

[33] R Kirby, Problems in low dimensional manifold theory, from: "Algebraic and geometric topology, II" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 273

[34] M A Knus, Quadratic and Hermitian forms over rings, 294, Springer (1991) | DOI

[35] K H Ko, A Seifert-matrix interpretation of Cappell and Shaneson’s approach to link cobordisms, Math. Proc. Cambridge Philos. Soc. 106 (1989) 531 | DOI

[36] M Kreck, Isotopy classes of diffeomorphisms of (k−1)–connected almost-parallelizable 2k–manifolds, from: "Algebraic topology" (editors J L Dupont, I H Madsen), Lecture Notes in Math. 763, Springer (1979) 643 | DOI

[37] M Kreck, Surgery and duality, Ann. of Math. 149 (1999) 707 | DOI

[38] T Y Lam, Serre’s problem on projective modules, Springer (2006) | DOI

[39] J Levine, Knot modules, I, Trans. Amer. Math. Soc. 229 (1977) 1 | DOI

[40] C Livingston, Surfaces bounding the unlink, Michigan Math. J. 29 (1982) 289

[41] B A Magurn, W Van Der Kallen, L N Vaserstein, Absolute stable rank and Witt cancellation for noncommutative rings, Invent. Math. 91 (1988) 525 | DOI

[42] T E Mark, Knotted surfaces in 4–manifolds, Forum Math. 25 (2013) 597 | DOI

[43] T Oba, Surfaces in the 4–disk with the same boundary and fundamental group, Math. Res. Lett. 27 (2020) 265 | DOI

[44] B Perron, Pseudo-isotopies et isotopies en dimension quatre dans la catégorie topologique, Topology 25 (1986) 381 | DOI

[45] F Quinn, Isotopy of 4–manifolds, J. Differential Geom. 24 (1986) 343

[46] A Ranicki, The algebraic theory of surgery, I : Foundations, Proc. London Math. Soc. 40 (1980) 87 | DOI

[47] A Ranicki, Exact sequences in the algebraic theory of surgery, 26, Princeton Univ. Press (1981)

[48] R Stong, Z Wang, Self-homeomorphisms of 4–manifolds with fundamental group Z, Topology Appl. 106 (2000) 49 | DOI

[49] N S Sunukjian, Surfaces in 4–manifolds : concordance, isotopy, and surgery, Int. Math. Res. Not. 2015 (2015) 7950 | DOI

Cité par Sources :