Prime-localized Weinstein subdomains
Geometry & topology, Tome 27 (2023) no. 2, pp. 699-737.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For any high-dimensional Weinstein domain and finite collection of primes, we construct a Weinstein subdomain whose wrapped Fukaya category is a localization of the original wrapped Fukaya category away from the given primes. When the original domain is a cotangent bundle, these subdomains form a decreasing lattice whose order cannot be reversed.

Furthermore, we classify the possible wrapped Fukaya categories of Weinstein subdomains of a cotangent bundle of a simply connected, spin manifold, showing that they all coincide with one of these prime localizations. In the process, we describe which twisted complexes in the wrapped Fukaya category of a cotangent bundle of a sphere are isomorphic to genuine Lagrangians.

DOI : 10.2140/gt.2023.27.699
Keywords: symplectic geometry, localization, primes, Weinstein, subdomain, nested

Lazarev, Oleg 1 ; Sylvan, Zachary 2

1 Department of Mathematics, University of Massachusetts Boston, Boston, MA, United States
2 Columbia University, New York, NY, United States
@article{GT_2023_27_2_a4,
     author = {Lazarev, Oleg and Sylvan, Zachary},
     title = {Prime-localized {Weinstein} subdomains},
     journal = {Geometry & topology},
     pages = {699--737},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     doi = {10.2140/gt.2023.27.699},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.699/}
}
TY  - JOUR
AU  - Lazarev, Oleg
AU  - Sylvan, Zachary
TI  - Prime-localized Weinstein subdomains
JO  - Geometry & topology
PY  - 2023
SP  - 699
EP  - 737
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.699/
DO  - 10.2140/gt.2023.27.699
ID  - GT_2023_27_2_a4
ER  - 
%0 Journal Article
%A Lazarev, Oleg
%A Sylvan, Zachary
%T Prime-localized Weinstein subdomains
%J Geometry & topology
%D 2023
%P 699-737
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.699/
%R 10.2140/gt.2023.27.699
%F GT_2023_27_2_a4
Lazarev, Oleg; Sylvan, Zachary. Prime-localized Weinstein subdomains. Geometry & topology, Tome 27 (2023) no. 2, pp. 699-737. doi : 10.2140/gt.2023.27.699. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.699/

[1] M Abouzaid, A cotangent fibre generates the Fukaya category, Adv. Math. 228 (2011) 894 | DOI

[2] M Abouzaid, A topological model for the Fukaya categories of plumbings, J. Differential Geom. 87 (2011) 1

[3] M Abouzaid, Nearby Lagrangians with vanishing Maslov class are homotopy equivalent, Invent. Math. 189 (2012) 251 | DOI

[4] M Abouzaid, On the wrapped Fukaya category and based loops, J. Symplectic Geom. 10 (2012) 27

[5] M Abouzaid, P Seidel, Altering symplectic manifolds by homologous recombination, preprint (2010)

[6] M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI

[7] J F Adams, On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 409 | DOI

[8] D Auroux, I Smith, Fukaya categories of surfaces, spherical objects and mapping class groups, Forum Math. Sigma 9 (2021) | DOI

[9] B Chantraine, G D Rizell, P Ghiggini, R Golovko, Geometric generation of the wrapped Fukaya category of Weinstein manifolds and sectors, preprint (2017)

[10] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI

[11] C Cornwell, L Ng, S Sivek, Obstructions to Lagrangian concordance, Algebr. Geom. Topol. 16 (2016) 797 | DOI

[12] T Ekholm, Holomorphic curves for Legendrian surgery, preprint (2019)

[13] T Ekholm, J Etnyre, M Sullivan, Nonisotopic Legendrian submanifolds in R2n+1, J. Differential Geom. 71 (2005) 85

[14] Y Eliashberg, S Ganatra, O Lazarev, Flexible Lagrangians, Int. Math. Res. Not. 2020 (2020) 2408 | DOI

[15] Y Eliashberg, E Murphy, Lagrangian caps, Geom. Funct. Anal. 23 (2013) 1483 | DOI

[16] K Fukaya, P Seidel, I Smith, The symplectic geometry of cotangent bundles from a categorical viewpoint, from: "Homological mirror symmetry" (editors A Kapustin, M Kreuzer, K G Schlesinger), Lecture Notes in Phys. 757, Springer (2009) 1 | DOI

[17] S Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, PhD thesis, Massachusetts Institute of Technology (2012)

[18] S Ganatra, J Pardon, V Shende, Microlocal Morse theory of wrapped Fukaya categories, preprint (2018)

[19] S Ganatra, J Pardon, V Shende, Sectorial descent for wrapped Fukaya categories, preprint (2018)

[20] S Ganatra, J Pardon, V Shende, Covariantly functorial wrapped Floer theory on Liouville sectors, Publ. Math. Inst. Hautes Études Sci. 131 (2020) 73 | DOI

[21] M Gromov, Partial differential relations, 9, Springer (1986) | DOI

[22] F Haiden, L Katzarkov, M Kontsevich, Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci. 126 (2017) 247 | DOI

[23] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[24] M Hutchings, C H Taubes, Proof of the Arnold chord conjecture in three dimensions, I, Math. Res. Lett. 18 (2011) 295 | DOI

[25] T Kragh, Parametrized ring-spectra and the nearby Lagrangian conjecture, Geom. Topol. 17 (2013) 639 | DOI

[26] O Lazarev, Geometric and algebraic presentations of Weinstein domains, preprint (2019)

[27] O Lazarev, H-principles for regular Lagrangians, J. Symplectic Geom. 18 (2020) 1071 | DOI

[28] O Lazarev, Maximal contact and symplectic structures, J. Topol. 13 (2020) 1058 | DOI

[29] O Lazarev, Simplifying Weinstein Morse functions, Geom. Topol. 24 (2020) 2603 | DOI

[30] V Lyubashenko, O Manzyuk, Quotients of unital A∞–categories, Theory Appl. Categ. 20 (2008) 405

[31] V Lyubashenko, S Ovsienko, A construction of quotient A∞–categories, Homology Homotopy Appl. 8 (2006) 157

[32] K Mohnke, Holomorphic disks and the chord conjecture, Ann. of Math. 154 (2001) 219 | DOI

[33] E Murphy, Loose Legendrian embeddings in high dimensional contact manifolds, preprint (2012)

[34] A Neeman, The chromatic tower for D(R), Topology 31 (1992) 519 | DOI

[35] A F Ritter, Topological quantum field theory structure on symplectic cohomology, J. Topol. 6 (2013) 391 | DOI

[36] Z Sylvan, Talks at MIT workshop on Lefschetz fibrations (2015)

[37] Z Sylvan, On partially wrapped Fukaya categories, J. Topol. 12 (2019) 372 | DOI

[38] Z Sylvan, Orlov and Viterbo functors in partially wrapped Fukaya categories, preprint (2019)

[39] R W Thomason, The classification of triangulated subcategories, Compositio Math. 105 (1997) 1 | DOI

Cité par Sources :