Tautological classes of definite 4–manifolds
Geometry & topology, Tome 27 (2023) no. 2, pp. 641-698.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a diagonalisation theorem for the tautological, or generalised Miller–Morita–Mumford, classes of compact, smooth, simply connected, definite 4–manifolds. Our result can be thought of as a families version of Donaldson’s diagonalisation theorem. We prove our result using a families version of the Bauer–Furuta cohomotopy refinement of Seiberg–Witten theory. We use our main result to deduce various results concerning the tautological classes of such 4–manifolds. In particular, we completely determine the tautological rings of 2 and 2 # 2. We also derive a series of linear relations in the tautological ring which are universal in the sense that they hold for all compact, smooth, simply connected definite 4–manifolds.

DOI : 10.2140/gt.2023.27.641
Keywords: tautological classes, Miller–Morita–Mumford classes, Seiberg–Witten, Bauer–Furuta, definite 4–manifolds

Baraglia, David 1

1 School of Mathematical Sciences, The University of Adelaide, Adelaide SA, Australia
@article{GT_2023_27_2_a3,
     author = {Baraglia, David},
     title = {Tautological classes of definite 4{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {641--698},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     doi = {10.2140/gt.2023.27.641},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.641/}
}
TY  - JOUR
AU  - Baraglia, David
TI  - Tautological classes of definite 4–manifolds
JO  - Geometry & topology
PY  - 2023
SP  - 641
EP  - 698
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.641/
DO  - 10.2140/gt.2023.27.641
ID  - GT_2023_27_2_a3
ER  - 
%0 Journal Article
%A Baraglia, David
%T Tautological classes of definite 4–manifolds
%J Geometry & topology
%D 2023
%P 641-698
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.641/
%R 10.2140/gt.2023.27.641
%F GT_2023_27_2_a3
Baraglia, David. Tautological classes of definite 4–manifolds. Geometry & topology, Tome 27 (2023) no. 2, pp. 641-698. doi : 10.2140/gt.2023.27.641. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.641/

[1] D Baraglia, Constraints on families of smooth 4–manifolds from Bauer–Furuta invariants, Algebr. Geom. Topol. 21 (2021) 317 | DOI

[2] D Baraglia, H Konno, On the Bauer–Furuta and Seiberg–Witten invariants of families of 4–manifolds, J. Topol. 15 (2022) 505 | DOI

[3] S Bauer, M Furuta, A stable cohomotopy refinement of Seiberg–Witten invariants, I, Invent. Math. 155 (2004) 1 | DOI

[4] M Bustamante, F T Farrell, Y Jiang, Rigidity and characteristic classes of smooth bundles with nonpositively curved fibers, J. Topol. 9 (2016) 934 | DOI

[5] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279

[6] J Ebert, O Randal-Williams, Generalised Miller–Morita–Mumford classes for block bundles and topological bundles, Algebr. Geom. Topol. 14 (2014) 1181 | DOI

[7] C Faber, A conjectural description of the tautological ring of the moduli space of curves, from: "Moduli of curves and abelian varieties" (editors C Faber, E Looijenga), Aspects Math. E33, Friedr. Vieweg (1999) 109 | DOI

[8] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) 357

[9] S Galatius, I Grigoriev, O Randal-Williams, Tautological rings for high-dimensional manifolds, Compos. Math. 153 (2017) 851 | DOI

[10] S Galatius, O Randal-Williams, Stable moduli spaces of high-dimensional manifolds, Acta Math. 212 (2014) 257 | DOI

[11] I Grigoriev, Relations among characteristic classes of manifold bundles, Geom. Topol. 21 (2017) 2015 | DOI

[12] A Grothendieck, Le groupe de Brauer, II : Théorie cohomologique, from: "Dix exposés sur la cohomologie des schémas", Adv. Stud. Pure Math. 3, North-Holland (1968) 67

[13] F Hebestreit, M Land, W Lück, O Randal-Williams, A vanishing theorem for tautological classes of aspherical manifolds, Geom. Topol. 25 (2021) 47 | DOI

[14] E Looijenga, On the tautological ring of Mg, Invent. Math. 121 (1995) 411 | DOI

[15] E Y Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986) 1

[16] S Morita, Generators for the tautological algebra of the moduli space of curves, Topology 42 (2003) 787 | DOI

[17] C Müller, C Wockel, Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group, Adv. Geom. 9 (2009) 605 | DOI

[18] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI

[19] O Randal-Williams, Some phenomena in tautological rings of manifolds, Selecta Math. 24 (2018) 3835 | DOI

[20] M Szymik, Characteristic cohomotopy classes for families of 4–manifolds, Forum Math. 22 (2010) 509 | DOI

[21] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17 | DOI

Cité par Sources :