Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a connected semisimple real algebraic group, and a Zariski dense Anosov subgroup with respect to a minimal parabolic subgroup. We describe the asymptotic behavior of matrix coefficients in as for any and any vector in the interior of the limit cone of . These asymptotics involve higher-rank analogues of Burger–Roblin measures, which are introduced in this paper. As an application, for any affine symmetric subgroup of , we obtain a bisector counting result for –orbits with respect to the corresponding generalized Cartan decomposition of . Moreover, we obtain analogues of the results of Duke, Rudnick and Sarnak as well as Eskin and McMullen for counting discrete –orbits in affine symmetric spaces .
Edwards, Samuel 1 ; Lee, Minju 2 ; Oh, Hee 3
@article{GT_2023_27_2_a1, author = {Edwards, Samuel and Lee, Minju and Oh, Hee}, title = {Anosov groups: local mixing, counting and equidistribution}, journal = {Geometry & topology}, pages = {513--573}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2023}, doi = {10.2140/gt.2023.27.513}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.513/} }
TY - JOUR AU - Edwards, Samuel AU - Lee, Minju AU - Oh, Hee TI - Anosov groups: local mixing, counting and equidistribution JO - Geometry & topology PY - 2023 SP - 513 EP - 573 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.513/ DO - 10.2140/gt.2023.27.513 ID - GT_2023_27_2_a1 ER -
Edwards, Samuel; Lee, Minju; Oh, Hee. Anosov groups: local mixing, counting and equidistribution. Geometry & topology, Tome 27 (2023) no. 2, pp. 513-573. doi : 10.2140/gt.2023.27.513. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.513/
[1] Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI
,[2] Effective equidistribution of S–integral points on symmetric varieties, Ann. Inst. Fourier (Grenoble) 62 (2012) 1889 | DOI
, ,[3] Anosov representations and dominated splittings, J. Eur. Math. Soc. 21 (2019) 3343 | DOI
, , ,[4] The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI
, , , ,[5] Horocycle flow on geometrically finite surfaces, Duke Math. J. 61 (1990) 779 | DOI
,[6] Counting problems for special-orthogonal Anosov representations, Ann. Inst. Fourier (Grenoble) 70 (2020) 1199 | DOI
,[7] Growth of quadratic forms under Anosov subgroups, Int. Math. Res. Not. 2023 (2023) 785 | DOI
,[8] Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces, Int. Math. Res. Not. (2023) | DOI
, ,[9] Topological mixing of Weyl chamber flows, Ergodic Theory Dynam. Systems 41 (2021) 1342 | DOI
, ,[10] Density of integer points on affine homogeneous varieties, Duke Math. J. 71 (1993) 143 | DOI
, , ,[11] Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993) 181 | DOI
, ,[12] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 | DOI
, ,[13] Orbits of discrete subgroups on a symmetric space and the Furstenberg boundary, Duke Math. J. 139 (2007) 483 | DOI
, ,[14] Integral points on symmetric varieties and Satake compactifications, Amer. J. Math. 131 (2009) 1 | DOI
, , ,[15] Strong wavefront lemma and counting lattice points in sectors, Israel J. Math. 176 (2010) 419 | DOI
, , ,[16] Anosov representations and proper actions, Geom. Topol. 21 (2017) 485 | DOI
, , , ,[17] Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI
, ,[18] Actions of large semigroups and random walks on isometric extensions of boundaries, Ann. Sci. École Norm. Sup. 40 (2007) 209 | DOI
, ,[19] Lie groups and Teichmüller space, Topology 31 (1992) 449 | DOI
,[20] Asymptotic properties of unitary representations, J. Functional Analysis 32 (1979) 72 | DOI
, ,[21] Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math. 3 (2017) 808 | DOI
, , ,[22] Geometric structures and representations of discrete groups, from: "Proceedings of the International Congress of Mathematicians" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 1133
,[23] Lie groups beyond an introduction, 140, Birkhäuser (2002) | DOI
,[24] Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI
,[25] Invariant measures for horospherical actions and Anosov groups, Int. Math. Res. Not. (2022) | DOI
, ,[26] Ergodic decompositions of geometric measures on Anosov homogeneous spaces, preprint (2020)
, ,[27] On some aspects of the theory of Anosov systems, Springer (2004) | DOI
,[28] The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979) 331 | DOI
,[29] Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc. 17 (2015) 837 | DOI
, ,[30] Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002) 133 | DOI
,[31] Local mixing and invariant measures for horospherical subgroups on abelian covers, Int. Math. Res. Not. 2019 (2019) 6036 | DOI
, ,[32] Equidistribution and counting for orbits of geometrically finite hyperbolic groups, J. Amer. Math. Soc. 26 (2013) 511 | DOI
, ,[33] Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of SL2(Z), J. Amer. Math. Soc. 29 (2016) 1069 | DOI
, ,[34] The limit set of a Fuchsian group, Acta Math. 136 (1976) 241 | DOI
,[35] Eigenvalues and entropy of a Hitchin representation, Invent. Math. 209 (2017) 885 | DOI
, ,[36] Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv. 77 (2002) 563 | DOI
,[37] Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal. 12 (2002) 776 | DOI
,[38] L’indicateur de croissance des groupes de Schottky, Ergodic Theory Dynam. Systems 23 (2003) 249 | DOI
,[39] Propriété de Kazhdan et sous-groupes discrets de covolume infini, from: "Proceedings of the conference on harmonic analysis", Trav. Math. 14, Univ. Luxembourg (2003) 143
,[40] Groupes de Schottky et comptage, Ann. Inst. Fourier (Grenoble) 55 (2005) 373 | DOI
,[41] An overview of Patterson–Sullivan theory, lecture notes (2006)
,[42] Ergodicité et équidistribution en courbure négative, 95, Soc. Math. France (2003)
,[43] Hyperconvex representations and exponential growth, Ergodic Theory Dynam. Systems 34 (2014) 986 | DOI
,[44] Quantitative properties of convex representations, Comment. Math. Helv. 89 (2014) 443 | DOI
,[45] The orbital counting problem for hyperconvex representations, Ann. Inst. Fourier (Grenoble) 65 (2015) 1755 | DOI
,[46] Hyperfunctions and harmonic analysis on symmetric spaces, 49, Birkhäuser (1984) | DOI
,[47] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 171 | DOI
,[48] Propriétés de mélange du flot des chambres de Weyl des groupes de ping-pong, Bull. Soc. Math. France 137 (2009) 387 | DOI
,[49] Free subgroups in linear groups, J. Algebra 20 (1972) 250 | DOI
,[50] An invitation to higher Teichmüller theory, from: "Proceedings of the International Congress of Mathematicians" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 1031
,[51] Mixing of frame flow for rank one locally symmetric spaces and measure classification, Israel J. Math. 210 (2015) 467 | DOI
,Cité par Sources :