Anosov groups: local mixing, counting and equidistribution
Geometry & topology, Tome 27 (2023) no. 2, pp. 513-573.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let G be a connected semisimple real algebraic group, and Γ < G a Zariski dense Anosov subgroup with respect to a minimal parabolic subgroup. We describe the asymptotic behavior of matrix coefficients (exptv).f1,f2 in L2(ΓG) as t for any f1,f2 Cc(ΓG) and any vector v in the interior of the limit cone of Γ. These asymptotics involve higher-rank analogues of Burger–Roblin measures, which are introduced in this paper. As an application, for any affine symmetric subgroup H of G, we obtain a bisector counting result for Γ–orbits with respect to the corresponding generalized Cartan decomposition of G. Moreover, we obtain analogues of the results of Duke, Rudnick and Sarnak as well as Eskin and McMullen for counting discrete Γ–orbits in affine symmetric spaces HG.

DOI : 10.2140/gt.2023.27.513
Keywords: Anosov group, local mixing, counting, equidistribution, higher rank Patterson–Sullivan theory

Edwards, Samuel 1 ; Lee, Minju 2 ; Oh, Hee 3

1 Department of Mathematics, Yale University, New Haven, CT, United States, Department of Mathematics, Durham University, Durham, United Kingdom
2 Department of Mathematics, Yale University, New Haven, CT, United States, Department of Mathematics, University of Chicago, Chicago, IL, United States
3 Department of Mathematics, Yale University, New Haven, CT, United States, Korea Institute for Advanced Study, Seoul, South Korea
@article{GT_2023_27_2_a1,
     author = {Edwards, Samuel and Lee, Minju and Oh, Hee},
     title = {Anosov groups: local mixing, counting and equidistribution},
     journal = {Geometry & topology},
     pages = {513--573},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     doi = {10.2140/gt.2023.27.513},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.513/}
}
TY  - JOUR
AU  - Edwards, Samuel
AU  - Lee, Minju
AU  - Oh, Hee
TI  - Anosov groups: local mixing, counting and equidistribution
JO  - Geometry & topology
PY  - 2023
SP  - 513
EP  - 573
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.513/
DO  - 10.2140/gt.2023.27.513
ID  - GT_2023_27_2_a1
ER  - 
%0 Journal Article
%A Edwards, Samuel
%A Lee, Minju
%A Oh, Hee
%T Anosov groups: local mixing, counting and equidistribution
%J Geometry & topology
%D 2023
%P 513-573
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.513/
%R 10.2140/gt.2023.27.513
%F GT_2023_27_2_a1
Edwards, Samuel; Lee, Minju; Oh, Hee. Anosov groups: local mixing, counting and equidistribution. Geometry & topology, Tome 27 (2023) no. 2, pp. 513-573. doi : 10.2140/gt.2023.27.513. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.513/

[1] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI

[2] Y Benoist, H Oh, Effective equidistribution of S–integral points on symmetric varieties, Ann. Inst. Fourier (Grenoble) 62 (2012) 1889 | DOI

[3] J Bochi, R Potrie, A Sambarino, Anosov representations and dominated splittings, J. Eur. Math. Soc. 21 (2019) 3343 | DOI

[4] M Bridgeman, R Canary, F Labourie, A Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI

[5] M Burger, Horocycle flow on geometrically finite surfaces, Duke Math. J. 61 (1990) 779 | DOI

[6] L Carvajales, Counting problems for special-orthogonal Anosov representations, Ann. Inst. Fourier (Grenoble) 70 (2020) 1199 | DOI

[7] L Carvajales, Growth of quadratic forms under Anosov subgroups, Int. Math. Res. Not. 2023 (2023) 785 | DOI

[8] M Chow, P Sarkar, Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces, Int. Math. Res. Not. (2023) | DOI

[9] N T Dang, O Glorieux, Topological mixing of Weyl chamber flows, Ergodic Theory Dynam. Systems 41 (2021) 1342 | DOI

[10] W Duke, Z Rudnick, P Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J. 71 (1993) 143 | DOI

[11] A Eskin, C Mcmullen, Mixing, counting, and equidistribution in Lie groups, Duke Math. J. 71 (1993) 181 | DOI

[12] V Fock, A Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006) 1 | DOI

[13] A Gorodnik, H Oh, Orbits of discrete subgroups on a symmetric space and the Furstenberg boundary, Duke Math. J. 139 (2007) 483 | DOI

[14] A Gorodnik, H Oh, N Shah, Integral points on symmetric varieties and Satake compactifications, Amer. J. Math. 131 (2009) 1 | DOI

[15] A Gorodnik, H Oh, N Shah, Strong wavefront lemma and counting lattice points in sectors, Israel J. Math. 176 (2010) 419 | DOI

[16] F Guéritaud, O Guichard, F Kassel, A Wienhard, Anosov representations and proper actions, Geom. Topol. 21 (2017) 485 | DOI

[17] O Guichard, A Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012) 357 | DOI

[18] Y Guivarc’H, A Raugi, Actions of large semigroups and random walks on isometric extensions of boundaries, Ann. Sci. École Norm. Sup. 40 (2007) 209 | DOI

[19] N J Hitchin, Lie groups and Teichmüller space, Topology 31 (1992) 449 | DOI

[20] R E Howe, C C Moore, Asymptotic properties of unitary representations, J. Functional Analysis 32 (1979) 72 | DOI

[21] M Kapovich, B Leeb, J Porti, Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math. 3 (2017) 808 | DOI

[22] F Kassel, Geometric structures and representations of discrete groups, from: "Proceedings of the International Congress of Mathematicians" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 1133

[23] A W Knapp, Lie groups beyond an introduction, 140, Birkhäuser (2002) | DOI

[24] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI

[25] M Lee, H Oh, Invariant measures for horospherical actions and Anosov groups, Int. Math. Res. Not. (2022) | DOI

[26] M Lee, H Oh, Ergodic decompositions of geometric measures on Anosov homogeneous spaces, preprint (2020)

[27] G A Margulis, On some aspects of the theory of Anosov systems, Springer (2004) | DOI

[28] T Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979) 331 | DOI

[29] A Mohammadi, H Oh, Matrix coefficients, counting and primes for orbits of geometrically finite groups, J. Eur. Math. Soc. 17 (2015) 837 | DOI

[30] H Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J. 113 (2002) 133 | DOI

[31] H Oh, W Pan, Local mixing and invariant measures for horospherical subgroups on abelian covers, Int. Math. Res. Not. 2019 (2019) 6036 | DOI

[32] H Oh, N A Shah, Equidistribution and counting for orbits of geometrically finite hyperbolic groups, J. Amer. Math. Soc. 26 (2013) 511 | DOI

[33] H Oh, D Winter, Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of SL2(Z), J. Amer. Math. Soc. 29 (2016) 1069 | DOI

[34] S J Patterson, The limit set of a Fuchsian group, Acta Math. 136 (1976) 241 | DOI

[35] R Potrie, A Sambarino, Eigenvalues and entropy of a Hitchin representation, Invent. Math. 209 (2017) 885 | DOI

[36] J F Quint, Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv. 77 (2002) 563 | DOI

[37] J F Quint, Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal. 12 (2002) 776 | DOI

[38] J F Quint, L’indicateur de croissance des groupes de Schottky, Ergodic Theory Dynam. Systems 23 (2003) 249 | DOI

[39] J F Quint, Propriété de Kazhdan et sous-groupes discrets de covolume infini, from: "Proceedings of the conference on harmonic analysis", Trav. Math. 14, Univ. Luxembourg (2003) 143

[40] J F Quint, Groupes de Schottky et comptage, Ann. Inst. Fourier (Grenoble) 55 (2005) 373 | DOI

[41] J F Quint, An overview of Patterson–Sullivan theory, lecture notes (2006)

[42] T Roblin, Ergodicité et équidistribution en courbure négative, 95, Soc. Math. France (2003)

[43] A Sambarino, Hyperconvex representations and exponential growth, Ergodic Theory Dynam. Systems 34 (2014) 986 | DOI

[44] A Sambarino, Quantitative properties of convex representations, Comment. Math. Helv. 89 (2014) 443 | DOI

[45] A Sambarino, The orbital counting problem for hyperconvex representations, Ann. Inst. Fourier (Grenoble) 65 (2015) 1755 | DOI

[46] H Schlichtkrull, Hyperfunctions and harmonic analysis on symmetric spaces, 49, Birkhäuser (1984) | DOI

[47] D Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 171 | DOI

[48] X Thirion, Propriétés de mélange du flot des chambres de Weyl des groupes de ping-pong, Bull. Soc. Math. France 137 (2009) 387 | DOI

[49] J Tits, Free subgroups in linear groups, J. Algebra 20 (1972) 250 | DOI

[50] A Wienhard, An invitation to higher Teichmüller theory, from: "Proceedings of the International Congress of Mathematicians" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 1031

[51] D Winter, Mixing of frame flow for rank one locally symmetric spaces and measure classification, Israel J. Math. 210 (2015) 467 | DOI

Cité par Sources :