Symplectic resolutions of character varieties
Geometry & topology, Tome 27 (2023) no. 1, pp. 51-86.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider the connected component of the identity of G–character varieties of compact Riemann surfaces of genus g > 0 for connected complex reductive groups G of type A (eg SLn and GLn). We show that these varieties are –factorial symplectic singularities and classify which admit symplectic resolutions. The classification reduces to the semisimple case, where we show that a resolution exists if and only if either g = 1 and G is a product of special linear groups of any rank and copies of the group PGL2, or g = 2 and G = (SL2)m for some m.

DOI : 10.2140/gt.2023.27.51
Classification : 14D20, 16D20, 16S80, 17B63
Keywords: symplectic resolution, character variety, Poisson variety

Bellamy, Gwyn 1 ; Schedler, Travis 2

1 School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
2 Department of Mathematics, Imperial College London, London, United Kingdom
@article{GT_2023_27_1_a1,
     author = {Bellamy, Gwyn and Schedler, Travis},
     title = {Symplectic resolutions of character varieties},
     journal = {Geometry & topology},
     pages = {51--86},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     doi = {10.2140/gt.2023.27.51},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.51/}
}
TY  - JOUR
AU  - Bellamy, Gwyn
AU  - Schedler, Travis
TI  - Symplectic resolutions of character varieties
JO  - Geometry & topology
PY  - 2023
SP  - 51
EP  - 86
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.51/
DO  - 10.2140/gt.2023.27.51
ID  - GT_2023_27_1_a1
ER  - 
%0 Journal Article
%A Bellamy, Gwyn
%A Schedler, Travis
%T Symplectic resolutions of character varieties
%J Geometry & topology
%D 2023
%P 51-86
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.51/
%R 10.2140/gt.2023.27.51
%F GT_2023_27_1_a1
Bellamy, Gwyn; Schedler, Travis. Symplectic resolutions of character varieties. Geometry & topology, Tome 27 (2023) no. 1, pp. 51-86. doi : 10.2140/gt.2023.27.51. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.51/

[1] A Aizenbud, N Avni, Representation growth and rational singularities of the moduli space of local systems, Invent. Math. 204 (2016) 245 | DOI

[2] A Alekseev, A Malkin, E Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998) 445

[3] M Artin, On the solutions of analytic equations, Invent. Math. 5 (1968) 277 | DOI

[4] M Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969) 23 | DOI

[5] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755

[6] A Beauville, Symplectic singularities, Invent. Math. 139 (2000) 541 | DOI

[7] G Bellamy, T Schedler, On the (non)existence of symplectic resolutions of linear quotients, Math. Res. Lett. 23 (2016) 1537 | DOI

[8] G Bellamy, T Schedler, On symplectic resolutions and factoriality of Hamiltonian reductions, Math. Ann. 375 (2019) 165 | DOI

[9] G Bellamy, T Schedler, Symplectic resolutions of quiver varieties, Selecta Math. 27 (2021) | DOI

[10] M Van Den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc. 360 (2008) 5711 | DOI

[11] C Birkar, P Cascini, C D Hacon, J Mckernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405 | DOI

[12] R Bocklandt, F Galluzzi, F Vaccarino, The Nori–Hilbert scheme is not smooth for 2–Calabi–Yau algebras, J. Noncommut. Geom. 10 (2016) 745 | DOI

[13] S Boissière, O Gabber, O Serman, Sur le produit de variétés localement factorielles ou Q–factorielles, preprint (2014)

[14] J F Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987) 65 | DOI

[15] N Budur, Rational singularities, quiver moment maps, and representations of surface groups, Int. Math. Res. Not. 2021 (2021) 11782 | DOI

[16] N Budur, M Zordan, On representation zeta functions for special linear groups, Int. Math. Res. Not. 2020 (2020) 868 | DOI

[17] W Crawley-Boevey, Monodromy for systems of vector bundles and multiplicative preprojective algebras, Bull. Lond. Math. Soc. 45 (2013) 309 | DOI

[18] W Crawley-Boevey, P Shaw, Multiplicative preprojective algebras, middle convolution and the Deligne–Simpson problem, Adv. Math. 201 (2006) 180 | DOI

[19] J M Drezet, Points non factoriels des variétés de modules de faisceaux semi-stables sur une surface rationnelle, J. Reine Angew. Math. 413 (1991) 99 | DOI

[20] C Felisetti, M Mauri, P = W conjectures for character varieties with symplectic resolution, J. Éc. polytech. Math. 9 (2022) 853 | DOI

[21] H Flenner, Extendability of differential forms on nonisolated singularities, Invent. Math. 94 (1988) 317 | DOI

[22] C Florentino, S Lawton, Singularities of free group character varieties, Pacific J. Math. 260 (2012) 149 | DOI

[23] B Fu, On Q–factorial terminalizations of nilpotent orbits, J. Math. Pures Appl. 93 (2010) 623 | DOI

[24] W L Gan, V Ginzburg, Almost-commuting variety, D–modules, and Cherednik algebras, Int. Math. Res. Pap. (2006) | DOI

[25] V Ginzburg, Lectures on Nakajima’s quiver varieties, from: "Geometric methods in representation theory, I" (editor M Brion), Sémin. Congr. 24, Soc. Math. France (2012) 145

[26] W M Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984) 200 | DOI

[27] W M Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986) 263 | DOI

[28] R Hermann, The formal linearization of a semisimple Lie algebra of vector fields about a singular point, Trans. Amer. Math. Soc. 130 (1968) 105 | DOI

[29] A Joseph, On a Harish-Chandra homomorphism, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 759 | DOI

[30] D Kaledin, Symplectic singularities from the Poisson point of view, J. Reine Angew. Math. 600 (2006) 135 | DOI

[31] D Kaledin, Geometry and topology of symplectic resolutions, from: "Algebraic geometry, II" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 595 | DOI

[32] D Kaledin, M Lehn, Local structure of hyperkähler singularities in O’Grady’s examples, Mosc. Math. J. 7 (2007) 653 | DOI

[33] D Kaledin, M Lehn, C Sorger, Singular symplectic moduli spaces, Invent. Math. 164 (2006) 591 | DOI

[34] D Kaplan, T Schedler, Multiplicative preprojective algebras are 2–Calabi–Yau, preprint (2021)

[35] S Lawton, C Manon, Character varieties of free groups are Gorenstein but not always factorial, J. Algebra 456 (2016) 278 | DOI

[36] M Lehn, C Sorger, La singularité de O’Grady, J. Algebraic Geom. 15 (2006) 753 | DOI

[37] J Li, The space of surface group representations, Manuscripta Math. 78 (1993) 223 | DOI

[38] D Luna, Slices étales, from: "Sur les groupes algébriques", Mém. Soc. Math. France 33, Soc. Math. France (1973) 81 | DOI

[39] M Martino, Stratifications of Marsden–Weinstein reductions for representations of quivers and deformations of symplectic quotient singularities, Math. Z. 258 (2008) 1 | DOI

[40] J S Milne, Étale cohomology, 33, Princeton Univ. Press (1980)

[41] Y Namikawa, A note on symplectic singularities, preprint (2001)

[42] Y Namikawa, Poisson deformations of affine symplectic varieties, Duke Math. J. 156 (2011) 51 | DOI

[43] R W Richardson, Conjugacy classes of n–tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988) 1 | DOI

[44] T Schedler, A Tirelli, Symplectic resolutions for multiplicative quiver varieties and character varieties for punctured surfaces, from: "Representation theory and algebraic geometry" (editors V Baranovsky, N Guay, T Schedler), Birkhäuser (2022) | DOI

[45] A S Sikora, Character varieties of abelian groups, Math. Z. 277 (2014) 241 | DOI

[46] A S Sikora, G–character varieties for G = SO(n, C) and other not simply connected groups, J. Algebra 429 (2015) 324 | DOI

[47] C T Simpson, Moduli of representations of the fundamental group of a smooth projective variety, II, Inst. Hautes Études Sci. Publ. Math. 80 (1994) 5 | DOI

[48] A Tirelli, Symplectic resolutions for Higgs moduli spaces, Proc. Amer. Math. Soc. 147 (2019) 1399 | DOI

[49] J Wierzba, Contractions of symplectic varieties, J. Algebraic Geom. 12 (2003) 507 | DOI

Cité par Sources :