Convex cocompact actions of relatively hyperbolic groups
Geometry & topology, Tome 27 (2023) no. 2, pp. 417-511.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider discrete groups in PGLd() acting convex cocompactly on a properly convex domain in real projective space. For such groups, we establish necessary and sufficient conditions for the group to be relatively hyperbolic in terms of the geometry of the convex domain. This answers a question of Danciger, Guéritaud and Kassel and is analogous to a result of Hruska and Kleiner for CAT(0) spaces.

DOI : 10.2140/gt.2023.27.417
Classification : 20F67, 20H10, 22E40, 53A20, 57N16
Keywords: convex real projective manifolds, relatively hyperbolic groups

Islam, Mitul 1 ; Zimmer, Andrew 2

1 Department of Mathematics, University of Michigan, Ann Arbor, MI, United States, Mathematisches Institut, Heidelberg University, Heidelberg, Germany
2 Department of Mathematics, Louisiana State University, Baton Rouge, LA, United States, Department of Mathematics, University of Wisconsin, Madison, Madison, WI, United States
@article{GT_2023_27_2_a0,
     author = {Islam, Mitul and Zimmer, Andrew},
     title = {Convex cocompact actions of relatively hyperbolic groups},
     journal = {Geometry & topology},
     pages = {417--511},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2023},
     doi = {10.2140/gt.2023.27.417},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.417/}
}
TY  - JOUR
AU  - Islam, Mitul
AU  - Zimmer, Andrew
TI  - Convex cocompact actions of relatively hyperbolic groups
JO  - Geometry & topology
PY  - 2023
SP  - 417
EP  - 511
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.417/
DO  - 10.2140/gt.2023.27.417
ID  - GT_2023_27_2_a0
ER  - 
%0 Journal Article
%A Islam, Mitul
%A Zimmer, Andrew
%T Convex cocompact actions of relatively hyperbolic groups
%J Geometry & topology
%D 2023
%P 417-511
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.417/
%R 10.2140/gt.2023.27.417
%F GT_2023_27_2_a0
Islam, Mitul; Zimmer, Andrew. Convex cocompact actions of relatively hyperbolic groups. Geometry & topology, Tome 27 (2023) no. 2, pp. 417-511. doi : 10.2140/gt.2023.27.417. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.417/

[1] S A Ballas, J Danciger, G S Lee, Convex projective structures on nonhyperbolic three-manifolds, Geom. Topol. 22 (2018) 1593 | DOI

[2] Y Benoist, Convexes divisibles, II, Duke Math. J. 120 (2003) 97 | DOI

[3] Y Benoist, Convexes divisibles, I, from: "Algebraic groups and arithmetic" (editors S G Dani, G Prasad), Tata Inst. Fund. Res. (2004) 339

[4] Y Benoist, Convexes divisibles, IV : Structure du bord en dimension 3, Invent. Math. 164 (2006) 249 | DOI

[5] Y Benoist, A survey on divisible convex sets, from: "Geometry, analysis and topology of discrete groups" (editors L Ji, K Liu, L Yang, S T Yau), Adv. Lect. Math. 6, International (2008) 1

[6] J P Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229

[7] M D Bobb, Codimension-1 simplices in divisible convex domains, Geom. Topol. 25 (2021) 3725 | DOI

[8] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[9] H Busemann, P J Kelly, Projective geometry and projective metrics, Academic (1953)

[10] S Choi, G S Lee, L Marquis, Convex projective generalized Dehn filling, Ann. Sci. Éc. Norm. Supér. 53 (2020) 217 | DOI

[11] D Cooper, D D Long, S Tillmann, On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181 | DOI

[12] J Danciger, F Guéritaud, F Kassel, Convex cocompact actions in real projective geometry, preprint (2017)

[13] J Danciger, F Guéritaud, F Kassel, Convex cocompactness in pseudo-Riemannian hyperbolic spaces, Geom. Dedicata 192 (2018) 87 | DOI

[14] C Druţu, Quasi-isometry invariants and asymptotic cones, Internat. J. Algebra Comput. 12 (2002) 99 | DOI

[15] C Druţu, M Sapir, Tree-graded spaces and asymptotic cones of groups, Topology 44 (2005) 959 | DOI

[16] S Frankel, Complex geometry of convex domains that cover varieties, Acta Math. 163 (1989) 109 | DOI

[17] D Gromoll, J A Wolf, Some relations between the metric structure and the algebraic structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer. Math. Soc. 77 (1971) 545 | DOI

[18] P De La Harpe, On Hilbert’s metric for simplices, from: "Geometric group theory, I" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 97 | DOI

[19] G C Hruska, Geometric invariants of spaces with isolated flats, Topology 44 (2005) 441 | DOI

[20] G C Hruska, B Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005) 1501 | DOI

[21] M Islam, A Zimmer, A flat torus theorem for convex co-compact actions of projective linear groups, J. Lond. Math. Soc. 103 (2021) 470 | DOI

[22] M Kapovich, Convex projective structures on Gromov–Thurston manifolds, Geom. Topol. 11 (2007) 1777 | DOI

[23] M Kapovich, B Leeb, Relativizing characterizations of Anosov subgroups, I, preprint (2018)

[24] P Kelly, E Straus, Curvature in Hilbert geometries, Pacific J. Math. 8 (1958) 119 | DOI

[25] B Kleiner, B Leeb, Rigidity of invariant convex sets in symmetric spaces, Invent. Math. 163 (2006) 657 | DOI

[26] H B Lawson Jr., S T Yau, Compact manifolds of nonpositive curvature, J. Differential Geometry 7 (1972) 211

[27] L Marquis, Around groups in Hilbert geometry, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 207 | DOI

[28] R D Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, 391, Amer. Math. Soc. (1988) | DOI

[29] J F Quint, Groupes convexes cocompacts en rang supérieur, Geom. Dedicata 113 (2005) 1 | DOI

[30] J F Quint, Convexes divisibles (d’après Yves Benoist), from: "Séminaire Bourbaki 2008/2009", Astérisque 332, Soc. Math. France (2010) 45

[31] A Sisto, Projections and relative hyperbolicity, Enseign. Math. 59 (2013) 165 | DOI

[32] C Vernicos, On the Hilbert geometry of convex polytopes, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 111 | DOI

[33] D T Wise, Non-positively curved squared complexes : Aperiodic tilings and non-residually finite groups, PhD thesis, Princeton University (1996)

[34] F Zhu, Relatively dominated representations, preprint (2019)

[35] A Zimmer, Projective Anosov representations, convex cocompact actions, and rigidity, J. Differential Geom. 119 (2021) 513 | DOI

Cité par Sources :