Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study Calabi–Yau metrics collapsing along a holomorphic fibration over a Riemann surface. Assuming at worst canonical singular fibres, we prove a uniform diameter bound for all fibres in the suitable rescaling. This has consequences on the geometry around the singular fibres.
Li, Yang 1
@article{GT_2023_27_1_a7, author = {Li, Yang}, title = {Collapsing {Calabi{\textendash}Yau} fibrations and uniform diameter bounds}, journal = {Geometry & topology}, pages = {397--415}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2023}, doi = {10.2140/gt.2023.27.397}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.397/} }
Li, Yang. Collapsing Calabi–Yau fibrations and uniform diameter bounds. Geometry & topology, Tome 27 (2023) no. 1, pp. 397-415. doi : 10.2140/gt.2023.27.397. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.397/
[1] Degenerate complex Monge–Ampère equations over compact Kähler manifolds, Internat. J. Math. 21 (2010) 357 | DOI
, ,[2] Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (2014) 63 | DOI
, ,[3] A priori L∞–estimates for degenerate complex Monge–Ampère equations, Int. Math. Res. Not. 2008 (2008) | DOI
, , ,[4] Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009) 607 | DOI
, , ,[5] Collapsing of abelian fibered Calabi–Yau manifolds, Duke Math. J. 162 (2013) 517 | DOI
, , ,[6] Gromov–Hausdorff collapsing of Calabi–Yau manifolds, Comm. Anal. Geom. 24 (2016) 93 | DOI
, , ,[7] Kähler–Ricci flow on blowups along submanifolds, Math. Ann. 375 (2019) 1147 | DOI
,[8] Higher-order estimates for collapsing Calabi–Yau metrics, Camb. J. Math. 8 (2020) 683 | DOI
, ,[9] A gluing construction of collapsing Calabi–Yau metrics on K3 fibred 3–folds, Geom. Funct. Anal. 29 (2019) 1002 | DOI
,[10] On collapsing Calabi–Yau fibrations, J. Differential Geom. 117 (2021) 451 | DOI
,[11] Families of singular Kähler–Einstein metrics, preprint (2020)
, , ,[12] Continuity of extremal transitions and flops for Calabi–Yau manifolds, J. Differential Geom. 89 (2011) 233
, ,[13] Riemannian geometry of Kähler–Einstein currents, preprint (2014)
,[14] Collapsing behavior of Ricci-flat Kähler metrics and long time solutions of the Kähler–Ricci flow, preprint (2019)
, , ,[15] On moderate degenerations of polarized Ricci-flat Kähler manifolds, J. Math. Sci. Univ. Tokyo 22 (2015) 469
,[16] Kähler–Einstein metrics on complex surfaces with C1 > 0, Comm. Math. Phys. 112 (1987) 175 | DOI
, ,[17] Adiabatic limits of Ricci-flat Kähler metrics, J. Differential Geom. 84 (2010) 427
,[18] The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits, Amer. J. Math. 140 (2018) 653 | DOI
, , ,[19] Infinite-time singularities of the Kähler–Ricci flow, Geom. Topol. 19 (2015) 2925 | DOI
, ,Cité par Sources :