Collapsing Calabi–Yau fibrations and uniform diameter bounds
Geometry & topology, Tome 27 (2023) no. 1, pp. 397-415.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study Calabi–Yau metrics collapsing along a holomorphic fibration over a Riemann surface. Assuming at worst canonical singular fibres, we prove a uniform diameter bound for all fibres in the suitable rescaling. This has consequences on the geometry around the singular fibres.

DOI : 10.2140/gt.2023.27.397
Keywords: collapsing, Calabi–Yau, fibration, diameter bound

Li, Yang 1

1 Department of Mathematics, MIT, Cambridge, MA, United States
@article{GT_2023_27_1_a7,
     author = {Li, Yang},
     title = {Collapsing {Calabi{\textendash}Yau} fibrations and uniform diameter bounds},
     journal = {Geometry & topology},
     pages = {397--415},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     doi = {10.2140/gt.2023.27.397},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.397/}
}
TY  - JOUR
AU  - Li, Yang
TI  - Collapsing Calabi–Yau fibrations and uniform diameter bounds
JO  - Geometry & topology
PY  - 2023
SP  - 397
EP  - 415
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.397/
DO  - 10.2140/gt.2023.27.397
ID  - GT_2023_27_1_a7
ER  - 
%0 Journal Article
%A Li, Yang
%T Collapsing Calabi–Yau fibrations and uniform diameter bounds
%J Geometry & topology
%D 2023
%P 397-415
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.397/
%R 10.2140/gt.2023.27.397
%F GT_2023_27_1_a7
Li, Yang. Collapsing Calabi–Yau fibrations and uniform diameter bounds. Geometry & topology, Tome 27 (2023) no. 1, pp. 397-415. doi : 10.2140/gt.2023.27.397. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.397/

[1] J P Demailly, N Pali, Degenerate complex Monge–Ampère equations over compact Kähler manifolds, Internat. J. Math. 21 (2010) 357 | DOI

[2] S Donaldson, S Sun, Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (2014) 63 | DOI

[3] P Eyssidieux, V Guedj, A Zeriahi, A priori L∞–estimates for degenerate complex Monge–Ampère equations, Int. Math. Res. Not. 2008 (2008) | DOI

[4] P Eyssidieux, V Guedj, A Zeriahi, Singular Kähler–Einstein metrics, J. Amer. Math. Soc. 22 (2009) 607 | DOI

[5] M Gross, V Tosatti, Y Zhang, Collapsing of abelian fibered Calabi–Yau manifolds, Duke Math. J. 162 (2013) 517 | DOI

[6] M Gross, V Tosatti, Y Zhang, Gromov–Hausdorff collapsing of Calabi–Yau manifolds, Comm. Anal. Geom. 24 (2016) 93 | DOI

[7] B Guo, Kähler–Ricci flow on blowups along submanifolds, Math. Ann. 375 (2019) 1147 | DOI

[8] H J Hein, V Tosatti, Higher-order estimates for collapsing Calabi–Yau metrics, Camb. J. Math. 8 (2020) 683 | DOI

[9] Y Li, A gluing construction of collapsing Calabi–Yau metrics on K3 fibred 3–folds, Geom. Funct. Anal. 29 (2019) 1002 | DOI

[10] Y Li, On collapsing Calabi–Yau fibrations, J. Differential Geom. 117 (2021) 451 | DOI

[11] E D Nezza, V Guedj, H Guenancia, Families of singular Kähler–Einstein metrics, preprint (2020)

[12] X Rong, Y Zhang, Continuity of extremal transitions and flops for Calabi–Yau manifolds, J. Differential Geom. 89 (2011) 233

[13] J Song, Riemannian geometry of Kähler–Einstein currents, preprint (2014)

[14] J Song, G Tian, Z Zhang, Collapsing behavior of Ricci-flat Kähler metrics and long time solutions of the Kähler–Ricci flow, preprint (2019)

[15] S Takayama, On moderate degenerations of polarized Ricci-flat Kähler manifolds, J. Math. Sci. Univ. Tokyo 22 (2015) 469

[16] G Tian, S T Yau, Kähler–Einstein metrics on complex surfaces with C1 > 0, Comm. Math. Phys. 112 (1987) 175 | DOI

[17] V Tosatti, Adiabatic limits of Ricci-flat Kähler metrics, J. Differential Geom. 84 (2010) 427

[18] V Tosatti, B Weinkove, X Yang, The Kähler–Ricci flow, Ricci-flat metrics and collapsing limits, Amer. J. Math. 140 (2018) 653 | DOI

[19] V Tosatti, Y Zhang, Infinite-time singularities of the Kähler–Ricci flow, Geom. Topol. 19 (2015) 2925 | DOI

Cité par Sources :