The Gromov–Hausdorff distance between spheres
Geometry & topology, Tome 27 (2023) no. 9, pp. 3733-3800.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We provide general upper and lower bounds for the Gromov–Hausdorff distance dGH(𝕊m, 𝕊n) between spheres 𝕊m and 𝕊n (endowed with the round metric) for 0 m < n . Some of these lower bounds are based on certain topological ideas related to the Borsuk–Ulam theorem. Via explicit constructions of (optimal) correspondences, we prove that our lower bounds are tight in the cases of dGH(𝕊0, 𝕊n), dGH(𝕊m, 𝕊), dGH(𝕊1, 𝕊2), dGH(𝕊1, 𝕊3) and dGH(𝕊2, 𝕊3). We also formulate a number of open questions.

DOI : 10.2140/gt.2023.27.3733
Keywords: Gromov–Hausdorff distance, Borsuk–Ulam theorem

Lim, Sunhyuk 1 ; Mémoli, Facundo 2 ; Smith, Zane 3

1 Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
2 Department of Mathematics, The Ohio State University, Columbus, OH, United States
3 Department of Computer Science, University of Minnesota, Minneapolis, MN, United States
@article{GT_2023_27_9_a6,
     author = {Lim, Sunhyuk and M\'emoli, Facundo and Smith, Zane},
     title = {The {Gromov{\textendash}Hausdorff} distance between spheres},
     journal = {Geometry & topology},
     pages = {3733--3800},
     publisher = {mathdoc},
     volume = {27},
     number = {9},
     year = {2023},
     doi = {10.2140/gt.2023.27.3733},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3733/}
}
TY  - JOUR
AU  - Lim, Sunhyuk
AU  - Mémoli, Facundo
AU  - Smith, Zane
TI  - The Gromov–Hausdorff distance between spheres
JO  - Geometry & topology
PY  - 2023
SP  - 3733
EP  - 3800
VL  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3733/
DO  - 10.2140/gt.2023.27.3733
ID  - GT_2023_27_9_a6
ER  - 
%0 Journal Article
%A Lim, Sunhyuk
%A Mémoli, Facundo
%A Smith, Zane
%T The Gromov–Hausdorff distance between spheres
%J Geometry & topology
%D 2023
%P 3733-3800
%V 27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3733/
%R 10.2140/gt.2023.27.3733
%F GT_2023_27_9_a6
Lim, Sunhyuk; Mémoli, Facundo; Smith, Zane. The Gromov–Hausdorff distance between spheres. Geometry & topology, Tome 27 (2023) no. 9, pp. 3733-3800. doi : 10.2140/gt.2023.27.3733. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3733/

[1] H Adams, S Chowdhury, A Q Jaffe, B Sibanda, Vietoris–Rips complexes of regular polygons, preprint (2018)

[2] I Bogdanov, Gromov–Hausdorff distance between a disk and a circle, MathOverflow answer (2018)

[3] A M Bronstein, M M Bronstein, R Kimmel, Numerical geometry of non-rigid shapes, Springer (2008) | DOI

[4] D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI

[5] G Carlsson, Topology and data, Bull. Amer. Math. Soc. 46 (2009) 255 | DOI

[6] G Carlsson, Topological pattern recognition for point cloud data, Acta Numer. 23 (2014) 289 | DOI

[7] G Carlsson, F Mémoli, Characterization, stability and convergence of hierarchical clustering methods, J. Mach. Learn. Res. 11 (2010) 1425

[8] M Cho, On the optimal covering of equal metric balls in a sphere, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 4 (1997) 137

[9] S Chowdhury, F Mémoli, Explicit geodesics in Gromov–Hausdorff space, Electron. Res. Announc. Math. Sci. 25 (2018) 48 | DOI

[10] T H Colding, Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996) 193 | DOI

[11] L E Dubins, G Schwarz, Equidiscontinuity of Borsuk–Ulam functions, Pacific J. Math. 95 (1981) 51 | DOI

[12] D A Edwards, The structure of superspace, from: "Studies in topology" (editors N M Stavrakas, K R Allen), Academic (1975) 121

[13] G B Folland, Real analysis: modern techniques and their applications, John Wiley and Sons (1999)

[14] K Funano, Estimates of Gromov’s box distance, Proc. Amer. Math. Soc. 136 (2008) 2911 | DOI

[15] A Gray, Tubes, 221, Birkhäuser (2004) | DOI

[16] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999) | DOI

[17] Y Ji, A A Tuzhilin, Gromov–Hausdorff distance between interval and circle, Topology Appl. 307 (2022) 107938 | DOI

[18] N J Kalton, M I Ostrovskii, Distances between Banach spaces, Forum Math. 11 (1999) 17 | DOI

[19] M Katz, The filling radius of two-point homogeneous spaces, J. Differential Geom. 18 (1983) 505 | DOI

[20] M G Katz, Torus cannot collapse to a segment, J. Geom. 111 (2020) 13 | DOI

[21] S Lim, F Mémoli, O B Okutan, Vietoris–Rips persistent homology, injective metric spaces, and the filling radius, preprint (2020)

[22] S Lim, F Mémoli, Z Smith, GitHub repository

[23] S Lim, F Mémoli, Z Smith, The Gromov–Hausdorff distance between spheres, preprint (2021)

[24] J Matoušek, Using the Borsuk–Ulam theorem : lectures on topological methods in combinatorics and geometry, Springer (2003) | DOI

[25] F Mémoli, Gromov–Wasserstein distances and the metric approach to object matching, Found. Comput. Math. 11 (2011) 417 | DOI

[26] F Mémoli, Some properties of Gromov–Hausdorff distances, Discrete Comput. Geom. 48 (2012) 416 | DOI

[27] F Mémoli, G Sapiro, A theoretical and computational framework for isometry invariant recognition of point cloud data, Found. Comput. Math. 5 (2005) 313 | DOI

[28] H J Munkholm, A Borsuk–Ulam theorem for maps from a sphere to a compact topological manifold, Illinois J. Math. 13 (1969) 116

[29] G Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann. 36 (1890) 157 | DOI

[30] P Petersen, Riemannian geometry, 171, Springer (1998) | DOI

[31] L A Santaló, Convex regions on the n–dimensional spherical surface, Ann. of Math. 47 (1946) 448 | DOI

Cité par Sources :