The derivative map for diffeomorphism of disks: an example
Geometry & topology, Tome 27 (2023) no. 9, pp. 3699-3713.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that the derivative map d: Diff(Dk) Ωk SOk, defined by taking the derivative of a diffeomorphism, can induce a nontrivial map on homotopy groups. Specifically, for k = 11 we prove that the following homomorphism is nonzero:

As a consequence we give a counterexample to a conjecture of Burghelea and Lashof by giving an example of a nontrivial vector bundle E over a sphere which is trivial as a topological k–bundle (the rank of E is k = 11 and the base sphere is S17).

The proof relies on a recent result of Burklund and Senger which determines the homotopy 17–spheres bounding 8–connected manifolds, the plumbing approach to the Gromoll filtration due to Antonelli, Burghelea and Kahn, and an explicit construction of low-codimension embeddings of certain homotopy spheres.

DOI : 10.2140/gt.2023.27.3699
Keywords: diffeomorphisms of discs, derivative map, topologically trivial vector bundle

Crowley, Diarmuid 1 ; Schick, Thomas 2 ; Steimle, Wolfgang 3

1 School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
2 Mathematisches Institut, Universität Göttingen, Göttingen, Germany
3 Institut für Mathematik, Universität Augsburg, Augsburg, Germany
@article{GT_2023_27_9_a4,
     author = {Crowley, Diarmuid and Schick, Thomas and Steimle, Wolfgang},
     title = {The derivative map for diffeomorphism of disks: an example},
     journal = {Geometry & topology},
     pages = {3699--3713},
     publisher = {mathdoc},
     volume = {27},
     number = {9},
     year = {2023},
     doi = {10.2140/gt.2023.27.3699},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3699/}
}
TY  - JOUR
AU  - Crowley, Diarmuid
AU  - Schick, Thomas
AU  - Steimle, Wolfgang
TI  - The derivative map for diffeomorphism of disks: an example
JO  - Geometry & topology
PY  - 2023
SP  - 3699
EP  - 3713
VL  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3699/
DO  - 10.2140/gt.2023.27.3699
ID  - GT_2023_27_9_a4
ER  - 
%0 Journal Article
%A Crowley, Diarmuid
%A Schick, Thomas
%A Steimle, Wolfgang
%T The derivative map for diffeomorphism of disks: an example
%J Geometry & topology
%D 2023
%P 3699-3713
%V 27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3699/
%R 10.2140/gt.2023.27.3699
%F GT_2023_27_9_a4
Crowley, Diarmuid; Schick, Thomas; Steimle, Wolfgang. The derivative map for diffeomorphism of disks: an example. Geometry & topology, Tome 27 (2023) no. 9, pp. 3699-3713. doi : 10.2140/gt.2023.27.3699. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3699/

[1] J F Adams, Vector fields on spheres, Ann. of Math. 75 (1962) 603 | DOI

[2] P L Antonelli, On stable diffeomorphism of exotic spheres in the metastable range, Canadian J. Math. 23 (1971) 579 | DOI

[3] P Antonelli, D Burghelea, P J Kahn, Gromoll groups, Diff Sn and bilinear constructions of exotic spheres, Bull. Amer. Math. Soc. 76 (1970) 772 | DOI

[4] P L Antonelli, D Burghelea, P J Kahn, The nonfinite homotopy type of some diffeomorphism groups, Topology 11 (1972) 1 | DOI

[5] D Burghelea, R Lashof, The homotopy type of the space of diffeomorphisms, I, Trans. Amer. Math. Soc. 196 (1974) 1 | DOI

[6] D Burghelea, R Lashof, The homotopy type of the space of diffeomorphisms, II, Trans. Amer. Math. Soc. 196 (1974) 37 | DOI

[7] R Burklund, A Senger, On the high-dimensional geography problem, preprint (2020)

[8] D Crowley, T Schick, The Gromoll filtration, KO–characteristic classes and metrics of positive scalar curvature, Geom. Topol. 17 (2013) 1773 | DOI

[9] D Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Math. Ann. 164 (1966) 353 | DOI

[10] A Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961) 47 | DOI

[11] W C Hsiang, J Levine, R H Szczarba, On the normal bundle of a homotopy sphere embedded in Euclidean space, Topology 3 (1965) 173 | DOI

[12] M A Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960) 161

[13] A Kupers, O Randal-Williams, On diffeomorphisms of even-dimensional discs, J. Amer. Math. Soc. (2023) | DOI

[14] J P Levine, Lectures on groups of homotopy spheres, from: "Algebraic and geometric topology" (editors A Ranicki, N Levitt, F Quinn), Lecture Notes in Math. 1126, Springer (1985) 62 | DOI

[15] W Lück, A basic introduction to surgery theory, from: "Topology of high-dimensional manifolds, I, II" (editors F T Farrell, L Göttsche, W Lück), ICTP Lect. Notes 9, Abdus Salam Int. Cent. Theoret. Phys. (2002) 1

[16] J Milnor, Differentiable structures on spheres, Amer. J. Math. 81 (1959) 962 | DOI

[17] J Milnor, Microbundles, I, Topology 3 (1964) 53 | DOI

[18] C P Rourke, B J Sanderson, Block bundles, I, Ann. of Math. 87 (1968) 1 | DOI

[19] C P Rourke, B J Sanderson, Block bundles, III : Homotopy theory, Ann. of Math. 87 (1968) 431 | DOI

[20] S Stolz, Hochzusammenhängende Mannigfaltigkeiten und ihre Ränder, 1116, Springer (1985) | DOI

[21] H Toda, Composition methods in homotopy groups of spheres, 49, Princeton Univ. Press (1962)

[22] C T C Wall, Classification of (n − 1)–connected 2n–manifolds, Ann. of Math. 75 (1962) 163 | DOI

[23] C T C Wall, Classification problems in differential topology, VI : Classification of (s−1)–connected (2s+1)–manifolds, Topology 6 (1967) 273 | DOI

Cité par Sources :