Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We determine the topology of the moduli space of surfaces of genus one with a Riemannian metric of constant curvature and one conical point of angle . In particular, for nonodd, is connected, has orbifold Euler characteristic , and its topology depends on the integer only. For odd, has connected components. For even, has a natural complex structure and it is biholomorphic to for a certain subgroup of of index , which is nonnormal for .
Eremenko, Alexandre 1 ; Mondello, Gabriele 2 ; Panov, Dmitri 3
@article{GT_2023_27_9_a3, author = {Eremenko, Alexandre and Mondello, Gabriele and Panov, Dmitri}, title = {Moduli of spherical tori with one conical point}, journal = {Geometry & topology}, pages = {3619--3698}, publisher = {mathdoc}, volume = {27}, number = {9}, year = {2023}, doi = {10.2140/gt.2023.27.3619}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3619/} }
TY - JOUR AU - Eremenko, Alexandre AU - Mondello, Gabriele AU - Panov, Dmitri TI - Moduli of spherical tori with one conical point JO - Geometry & topology PY - 2023 SP - 3619 EP - 3698 VL - 27 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3619/ DO - 10.2140/gt.2023.27.3619 ID - GT_2023_27_9_a3 ER -
%0 Journal Article %A Eremenko, Alexandre %A Mondello, Gabriele %A Panov, Dmitri %T Moduli of spherical tori with one conical point %J Geometry & topology %D 2023 %P 3619-3698 %V 27 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3619/ %R 10.2140/gt.2023.27.3619 %F GT_2023_27_9_a3
Eremenko, Alexandre; Mondello, Gabriele; Panov, Dmitri. Moduli of spherical tori with one conical point. Geometry & topology, Tome 27 (2023) no. 9, pp. 3619-3698. doi : 10.2140/gt.2023.27.3619. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3619/
[1] A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI
, , ,[2] Mean field equations, hyperelliptic curves and modular forms, I, Camb. J. Math. 3 (2015) 127 | DOI
, , ,[3] Mean field equation of Liouville type with singular data : topological degree, Comm. Pure Appl. Math. 68 (2015) 887 | DOI
, ,[4] Conformal metrics with constant curvature one and finitely many conical singularities on compact Riemann surfaces, Pacific J. Math. 273 (2015) 75 | DOI
, , , ,[5] Existence and non-existence of solutions of the mean field equations on flat tori, Proc. Amer. Math. Soc. 145 (2017) 3989 | DOI
, , ,[6] Critical points of the classical Eisenstein series of weight two, J. Differential Geom. 113 (2019) 189 | DOI
, ,[7] Three-dimensional orbifolds and cone-manifolds, 5, Math. Soc. Japan (2000) | DOI
, , ,[8] Sur la sphère vide, Bull. Acad. Sci. URSS (1934) 793
,[9] Metrics of positive curvature with conic singularities on the sphere, Proc. Amer. Math. Soc. 132 (2004) 3349 | DOI
,[10] Metrics of constant positive curvature with four conic singularities on the sphere, Proc. Amer. Math. Soc. 148 (2020) 3957 | DOI
,[11] On metrics of curvature 1 with four conic singularities on tori and on the sphere, Illinois J. Math. 59 (2015) 925
, ,[12] The space of Schwarz–Klein spherical triangles, J. Math. Phys. Anal. Geom. 16 (2020) 263 | DOI
, ,[13] Moduli spaces for Lamé functions and abelian differentials of the second kind, Commun. Contemp. Math. 24 (2022) 2150028 | DOI
, , , ,[14] Fuchsian equations with three non-apparent singularities, Symmetry Integrability Geom. Methods Appl. 14 (2018) 058 | DOI
, ,[15] Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007) | DOI
,[16] The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457 | DOI
, ,[17] Vorlesungen über die hypergeometrische Funktion, 39, Springer (1933) 344 | DOI
,[18] Irreducible cone spherical metrics and stable extensions of two line bundles, Adv. Math. 388 (2021) 107854 | DOI
, , ,[19] Elliptic functions, Green functions and the mean field equations on tori, Ann. of Math. 172 (2010) 911 | DOI
, ,[20] Mean field equations, hyperelliptic curves and modular forms, II, J. Éc. polytech. Math. 4 (2017) 557 | DOI
, ,[21] Lamé polynomials, hyperelliptic reductions and Lamé band structure, Philos. Trans. Roy. Soc. Lond. Ser. A 366 (2008) 1115 | DOI
,[22] Spherical metrics with conical singularities on a 2–sphere : angle constraints, Int. Math. Res. Not. 2016 (2016) 4937 | DOI
, ,[23] Spherical surfaces with conical points: systole inequality and moduli spaces with many connected components, Geom. Funct. Anal. 29 (2019) 1110 | DOI
, ,[24] Lectures on discrete and polyhedral geometry, (2010)
,[25] Uniformization of Riemann surfaces, Eur. Math. Soc. (2016) | DOI
,[26] Drawing cone spherical metrics via Strebel differentials, Int. Math. Res. Not. 2020 (2020) 3341 | DOI
, , , ,[27] Analytical, geometrical and topological aspects of a class of mean field equations on surfaces, Discrete Contin. Dyn. Syst. 28 (2010) 931 | DOI
,[28] Shapes of polyhedra and triangulations of the sphere, from: "The Epstein birthday schrift" (editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1, Geom. Topol. Publ. (1998) 511 | DOI
,[29] A course of modern analysis, Cambridge Univ. Press (1996) | DOI
, ,Cité par Sources :