Congruences on K–theoretic Gromov–Witten invariants
Geometry & topology, Tome 27 (2023) no. 9, pp. 3585-3618.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study K–theoretic Gromov–Witten invariants of projective hypersurfaces using a virtual localization formula under finite group actions. In particular, it provides all K–theoretic Gromov–Witten invariants of the quintic threefold modulo 41, up to genus 19 and degree 40. As an illustration, we give an instance in genus one and degree one. Applying the same idea to a K–theoretic version of FJRW theory, we determine it modulo 205 for the quintic polynomial with minimal group and narrow insertions, in every genus.

DOI : 10.2140/gt.2023.27.3585
Keywords: K–theory, Gromov-Witten theory, mirror symmetry

Guéré, Jérémy 1

1 Institut Fourier, CNRS, Université de Grenoble Alpes, Grenoble, France
@article{GT_2023_27_9_a2,
     author = {Gu\'er\'e, J\'er\'emy},
     title = {Congruences on {K{\textendash}theoretic} {Gromov{\textendash}Witten} invariants},
     journal = {Geometry & topology},
     pages = {3585--3618},
     publisher = {mathdoc},
     volume = {27},
     number = {9},
     year = {2023},
     doi = {10.2140/gt.2023.27.3585},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3585/}
}
TY  - JOUR
AU  - Guéré, Jérémy
TI  - Congruences on K–theoretic Gromov–Witten invariants
JO  - Geometry & topology
PY  - 2023
SP  - 3585
EP  - 3618
VL  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3585/
DO  - 10.2140/gt.2023.27.3585
ID  - GT_2023_27_9_a2
ER  - 
%0 Journal Article
%A Guéré, Jérémy
%T Congruences on K–theoretic Gromov–Witten invariants
%J Geometry & topology
%D 2023
%P 3585-3618
%V 27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3585/
%R 10.2140/gt.2023.27.3585
%F GT_2023_27_9_a2
Guéré, Jérémy. Congruences on K–theoretic Gromov–Witten invariants. Geometry & topology, Tome 27 (2023) no. 9, pp. 3585-3618. doi : 10.2140/gt.2023.27.3585. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3585/

[1] D Abramovich, A Corti, A Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003) 3547 | DOI

[2] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[3] P Berglund, T Hübsch, A generalized construction of mirror manifolds, Nuclear Phys. B 393 (1993) 377 | DOI

[4] P Candelas, X C De La Ossa, P S Green, L Parkes, A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991) 21 | DOI

[5] H L Chang, S Guo, J Li, BCOV’s Feynman rule of quintic 3–folds, preprint (2019)

[6] H L Chang, J Li, Gromov–Witten invariants of stable maps with fields, Int. Math. Res. Not. 2012 (2012) 4163 | DOI

[7] A Chiodo, G Farkas, Singularities of the moduli space of level curves, J. Eur. Math. Soc. 19 (2017) 603 | DOI

[8] A Chiodo, H Iritani, Y Ruan, Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014) 127 | DOI

[9] A Chiodo, Y Ruan, Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010) 117 | DOI

[10] A Chiodo, Y Ruan, A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence, Ann. Inst. Fourier (Grenoble) 61 (2011) 2803 | DOI

[11] H Fan, T J Jarvis, Y Ruan, The Witten equation and its virtual fundamental cycle, preprint (2007)

[12] H Fan, T Jarvis, Y Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013) 1 | DOI

[13] H Fan, Y P Lee, Towards a quantum Lefschetz hyperplane theorem in all genera, Geom. Topol. 23 (2019) 493 | DOI

[14] A Givental, A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141 | DOI

[15] A B Givental, Permutation-equivariant quantum K–theory, I : Definitions. Elementary K–theory of M0,n∕Sn, preprint (2015)

[16] A B Givental, Permutation-equivariant quantum K–theory, IX : Quantum Hirzebruch–Riemann–Roch in all genera, preprint (2017)

[17] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[18] J Guéré, A Landau–Ginzburg mirror theorem without concavity, Duke Math. J. 165 (2016) 2461 | DOI

[19] J Guéré, Hodge–Gromov–Witten theory, preprint (2019)

[20] S Guo, F Janda, Y Ruan, Structure of higher genus Gromov–Witten invariants of quintic 3–folds, preprint (2018)

[21] Y H He, The Calabi–Yau landscape : from geometry, to physics, to machine learning, 2293, Springer (2021) | DOI

[22] H Jockers, P Mayr, Quantum K–theory of Calabi–Yau manifolds, J. High Energy Phys. (2019) 1 | DOI

[23] S Kondō, The maximum order of finite groups of automorphisms of K3 surfaces, Amer. J. Math. 121 (1999) 1245 | DOI

[24] M Kreuzer, H Skarke, On the classification of quasihomogeneous functions, Comm. Math. Phys. 150 (1992) 137 | DOI

[25] Y P Lee, Quantum K–theory, I : Foundations, Duke Math. J. 121 (2004) 389 | DOI

[26] Y P Lee, F Qu, Euler characteristics of universal cotangent line bundles on M1,n, Proc. Amer. Math. Soc. 142 (2014) 429 | DOI

[27] H Lho, R Pandharipande, Holomorphic anomaly equations for the formal quintic, Peking Math. J. 2 (2019) 1 | DOI

[28] B H Lian, K Liu, S T Yau, Mirror principle, I, Asian J. Math. 1 (1997) 729 | DOI

[29] K Liu, H Xu, Intersection numbers and automorphisms of stable curves, Michigan Math. J. 58 (2009) 385 | DOI

[30] K Oguiso, X Yu, Automorphism groups of smooth quintic threefolds, Asian J. Math. 23 (2019) 201 | DOI

[31] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI

[32] A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 | DOI

[33] A Polishchuk, A Vaintrob, Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016) 1 | DOI

[34] F Qu, Virtual pullbacks in K–theory, Ann. Inst. Fourier (Grenoble) 68 (2018) 1609 | DOI

[35] M F Tehrani, Automorphism group of Batyrev Calabi–Yau threefolds, Manuscripta Math. 146 (2015) 299 | DOI

[36] R W Thomason, Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. in Math. 65 (1987) 16 | DOI

[37] R W Thomason, Une formule de Lefschetz en K–théorie équivariante algébrique, Duke Math. J. 68 (1992) 447 | DOI

[38] V Tonita, A virtual Kawasaki–Riemann–Roch formula, Pacific J. Math. 268 (2014) 249 | DOI

Cité par Sources :