Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study K–theoretic Gromov–Witten invariants of projective hypersurfaces using a virtual localization formula under finite group actions. In particular, it provides all K–theoretic Gromov–Witten invariants of the quintic threefold modulo , up to genus and degree . As an illustration, we give an instance in genus one and degree one. Applying the same idea to a K–theoretic version of FJRW theory, we determine it modulo for the quintic polynomial with minimal group and narrow insertions, in every genus.
Guéré, Jérémy 1
@article{GT_2023_27_9_a2, author = {Gu\'er\'e, J\'er\'emy}, title = {Congruences on {K{\textendash}theoretic} {Gromov{\textendash}Witten} invariants}, journal = {Geometry & topology}, pages = {3585--3618}, publisher = {mathdoc}, volume = {27}, number = {9}, year = {2023}, doi = {10.2140/gt.2023.27.3585}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3585/} }
Guéré, Jérémy. Congruences on K–theoretic Gromov–Witten invariants. Geometry & topology, Tome 27 (2023) no. 9, pp. 3585-3618. doi : 10.2140/gt.2023.27.3585. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3585/
[1] Twisted bundles and admissible covers, Comm. Algebra 31 (2003) 3547 | DOI
, , ,[2] The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI
, ,[3] A generalized construction of mirror manifolds, Nuclear Phys. B 393 (1993) 377 | DOI
, ,[4] A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991) 21 | DOI
, , , ,[5] BCOV’s Feynman rule of quintic 3–folds, preprint (2019)
, , ,[6] Gromov–Witten invariants of stable maps with fields, Int. Math. Res. Not. 2012 (2012) 4163 | DOI
, ,[7] Singularities of the moduli space of level curves, J. Eur. Math. Soc. 19 (2017) 603 | DOI
, ,[8] Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014) 127 | DOI
, , ,[9] Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010) 117 | DOI
, ,[10] A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence, Ann. Inst. Fourier (Grenoble) 61 (2011) 2803 | DOI
, ,[11] The Witten equation and its virtual fundamental cycle, preprint (2007)
, , ,[12] The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013) 1 | DOI
, , ,[13] Towards a quantum Lefschetz hyperplane theorem in all genera, Geom. Topol. 23 (2019) 493 | DOI
, ,[14] A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141 | DOI
,[15] Permutation-equivariant quantum K–theory, I : Definitions. Elementary K–theory of M0,n∕Sn, preprint (2015)
,[16] Permutation-equivariant quantum K–theory, IX : Quantum Hirzebruch–Riemann–Roch in all genera, preprint (2017)
,[17] Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI
, ,[18] A Landau–Ginzburg mirror theorem without concavity, Duke Math. J. 165 (2016) 2461 | DOI
,[19] Hodge–Gromov–Witten theory, preprint (2019)
,[20] Structure of higher genus Gromov–Witten invariants of quintic 3–folds, preprint (2018)
, , ,[21] The Calabi–Yau landscape : from geometry, to physics, to machine learning, 2293, Springer (2021) | DOI
,[22] Quantum K–theory of Calabi–Yau manifolds, J. High Energy Phys. (2019) 1 | DOI
, ,[23] The maximum order of finite groups of automorphisms of K3 surfaces, Amer. J. Math. 121 (1999) 1245 | DOI
,[24] On the classification of quasihomogeneous functions, Comm. Math. Phys. 150 (1992) 137 | DOI
, ,[25] Quantum K–theory, I : Foundations, Duke Math. J. 121 (2004) 389 | DOI
,[26] Euler characteristics of universal cotangent line bundles on M1,n, Proc. Amer. Math. Soc. 142 (2014) 429 | DOI
, ,[27] Holomorphic anomaly equations for the formal quintic, Peking Math. J. 2 (2019) 1 | DOI
, ,[28] Mirror principle, I, Asian J. Math. 1 (1997) 729 | DOI
, , ,[29] Intersection numbers and automorphisms of stable curves, Michigan Math. J. 58 (2009) 385 | DOI
, ,[30] Automorphism groups of smooth quintic threefolds, Asian J. Math. 23 (2019) 201 | DOI
, ,[31] Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI
, ,[32] Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 | DOI
, ,[33] Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016) 1 | DOI
, ,[34] Virtual pullbacks in K–theory, Ann. Inst. Fourier (Grenoble) 68 (2018) 1609 | DOI
,[35] Automorphism group of Batyrev Calabi–Yau threefolds, Manuscripta Math. 146 (2015) 299 | DOI
,[36] Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. in Math. 65 (1987) 16 | DOI
,[37] Une formule de Lefschetz en K–théorie équivariante algébrique, Duke Math. J. 68 (1992) 447 | DOI
,[38] A virtual Kawasaki–Riemann–Roch formula, Pacific J. Math. 268 (2014) 249 | DOI
,Cité par Sources :