Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct geometric maps from the cyclic homology groups of the (compact or wrapped) Fukaya category to the corresponding –equivariant (Floer/quantum or symplectic) cohomology groups, which are natural with respect to all Gysin and periodicity exact sequences and are isomorphisms whenever the (nonequivariant) open–closed map is. These cyclic open–closed maps give constructions of geometric smooth and/or proper Calabi–Yau structures on Fukaya categories, which in the proper case implies the Fukaya category has a cyclic model in characteristic , and also give a purely symplectic proof of the noncommutative Hodge–de Rham degeneration conjecture for smooth and proper subcategories of Fukaya categories of compact symplectic manifolds. Further applications of cyclic open–closed maps, to counting curves in mirror symmetry and to comparing topological field theories, are the subject of joint projects with Perutz and Sheridan, and with Cohen.
Ganatra, Sheel 1
@article{GT_2023_27_9_a1, author = {Ganatra, Sheel}, title = {Cyclic homology, {S1{\textendash}equivariant} {Floer} cohomology and {Calabi{\textendash}Yau} structures}, journal = {Geometry & topology}, pages = {3461--3584}, publisher = {mathdoc}, volume = {27}, number = {9}, year = {2023}, doi = {10.2140/gt.2023.27.3461}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3461/} }
TY - JOUR AU - Ganatra, Sheel TI - Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures JO - Geometry & topology PY - 2023 SP - 3461 EP - 3584 VL - 27 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3461/ DO - 10.2140/gt.2023.27.3461 ID - GT_2023_27_9_a1 ER -
Ganatra, Sheel. Cyclic homology, S1–equivariant Floer cohomology and Calabi–Yau structures. Geometry & topology, Tome 27 (2023) no. 9, pp. 3461-3584. doi : 10.2140/gt.2023.27.3461. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3461/
[1] A geometric criterion for generating the Fukaya category, Publ. Math. Inst. Hautes Études Sci. 112 (2010) 191 | DOI
,[2] Quantum cohomology and split generation in Lagrangian Floer theory, in preparation
, , , , ,[3] An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI
, ,[4] Symplectic Tate homology, Proc. Lond. Math. Soc. 112 (2016) 169 | DOI
, , ,[5] Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI
, , ,[6] S1–equivariant symplectic homology and linearized contact homology, Int. Math. Res. Not. 2017 (2017) 3849 | DOI
, ,[7] Relative Calabi–Yau structures, Compos. Math. 155 (2019) 372 | DOI
, ,[8] Cyclic homology and the algebraic K–theory of spaces, I, from: "Applications of algebraic –theory to algebraic geometry and number theory, I, II" (editors S J Bloch, R K Dennis, E M Friedlander, M R Stein), Contemp. Math. 55, Amer. Math. Soc. (1986) 89 | DOI
,[9] Potentials of homotopy cyclic A∞–algebras, Homology Homotopy Appl. 14 (2012) 203 | DOI
, ,[10] Symplectic homology, II : A general construction, Math. Z. 218 (1995) 103 | DOI
, , ,[11] Applications of symplectic homology, II : Stability of the action spectrum, Math. Z. 223 (1996) 27 | DOI
, , , ,[12] Calabi–Yau categories, the Floer theory of the cotangent bundle, and the string topology of the base, in preparation
, ,[13] Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985) 257
,[14] Topological conformal field theories and Calabi–Yau categories, Adv. Math. 210 (2007) 165 | DOI
,[15] The partition function of a topological field theory, J. Topol. 2 (2009) 779 | DOI
,[16] De Rham cohomology and homotopy Frobenius manifolds, J. Eur. Math. Soc. 17 (2015) 535 | DOI
, , ,[17] Differential graded algebras in topology, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 829 | DOI
, , ,[18] Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989) 207
,[19] Symplectic homology, I : Open sets in Cn, Math. Z. 215 (1994) 37 | DOI
, ,[20] Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math. 50 (2010) 521 | DOI
,[21] Counting pseudo-holomorphic discs in Calabi–Yau 3–folds, Tohoku Math. J. 63 (2011) 697 | DOI
,[22] Lagrangian intersection Floer theory : anomaly and obstruction, II, 46.2, Amer. Math. Soc. (2009) | DOI
, , , ,[23] Lagrangian Floer theory and mirror symmetry on compact toric manifolds, 376, Soc. Math. France (2016) | DOI
, , , ,[24] Symplectic cohomology and duality for the wrapped Fukaya category, preprint (2013)
,[25] Automatically generating Fukaya categories and computing quantum cohomology, preprint (2016)
,[26] The cyclic open–closed map and noncommutative Hodge structures, in preparation
, , ,[27] Mirror symmetry: from categories to curve counts, preprint (2015)
, , ,[28] Lectures on noncommutative geometry, lecture notes (2005)
,[29] Non-commutative Hodge-to-de Rham degeneration via the method of Deligne–Illusie, Pure Appl. Math. Q. 4 (2008) 785 | DOI
,[30] Spectral sequences for cyclic homology, from: "Algebra, geometry, and physics in the 21st century" (editors D Auroux, L Katzarkov, T Pantev, Y Soibelman, Y Tschinkel), Progr. Math. 324, Birkhäuser (2017) 99 | DOI
,[31] Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987) 195 | DOI
,[32] On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999) 1 | DOI
,[33] A–infinity algebras, modules and functor categories, from: "Trends in representation theory of algebras and related topics" (editors J A de la Peña, R Bautista), Contemp. Math. 406, Amer. Math. Soc. (2006) 67 | DOI
,[34] On operad structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1995) 1 | DOI
, , ,[35] XI Solomon Lefschetz memorial lecture series : Hodge structures in non-commutative geometry, from: "Non-commutative geometry in mathematics and physics" (editors G Dito, H García-Compeán, E Lupercio, F J Turrubiates), Contemp. Math. 462, Amer. Math. Soc. (2008) 1 | DOI
,[36] Weak CY algebras, conference talk (2013)
,[37] Notes on A∞–algebras, A∞–categories and non-commutative geometry, from: "Homological mirror symmetry" (editors A Kapustin, M Kreuzer, K G Schlesinger), Lecture Notes in Phys. 757, Springer (2009) 153 | DOI
, ,[38] Pre-Calabi–Yau algebras and topological quantum field theories, preprint (2021)
, , ,[39] Smooth Calabi–Yau structures and the noncommutative Legendre transform, preprint (2023)
, , ,[40] Sur les A∞ catégories, PhD thesis, Université Paris 7 – Denis Diderot (2003)
,[41] Cyclic homology, 301, Springer (1992) | DOI
,[42] Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984) 569 | DOI
, ,[43] The cyclic homology of an exact category, J. Pure Appl. Algebra 93 (1994) 251 | DOI
,[44] A user’s guide to spectral sequences, 58, Cambridge Univ. Press (2001) | DOI
,[45] String topology for spheres, Comment. Math. Helv. 84 (2009) 135 | DOI
,[46] Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171
, , ,[47] Topological quantum field theory structure on symplectic cohomology, J. Topol. 6 (2013) 391 | DOI
,[48] Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000) 103 | DOI
,[49] Fukaya categories and deformations, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. (2002) 351
,[50] A∞–subalgebras and natural transformations, Homology Homotopy Appl. 10 (2008) 83 | DOI
,[51] A biased view of symplectic cohomology, from: "Current developments in mathematics" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2008) 211
,[52] Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI
,[53] Suspending Lefschetz fibrations, with an application to local mirror symmetry, Comm. Math. Phys. 297 (2010) 515 | DOI
,[54] Categorical dynamics and symplectic topology, lecture notes (2013)
,[55] Disjoinable Lagrangian spheres and dilations, Invent. Math. 197 (2014) 299 | DOI
,[56] Connections on equivariant Hamiltonian Floer cohomology, Comment. Math. Helv. 93 (2018) 587 | DOI
,[57] Fukaya A∞–structures associated to Lefschetz fibrations, VI, preprint (2018)
,[58] Symplectic cohomology and q–intersection numbers, Geom. Funct. Anal. 22 (2012) 443 | DOI
, ,[59] Homological mirror symmetry for Calabi–Yau hypersurfaces in projective space, Invent. Math. 199 (2015) 1 | DOI
,[60] On the Fukaya category of a Fano hypersurface in projective space, Publ. Math. Inst. Hautes Études Sci. 124 (2016) 165 | DOI
,[61] Formulae in noncommutative Hodge theory, J. Homotopy Relat. Struct. 15 (2020) 249 | DOI
,[62] Infinity-inner-products on A–infinity-algebras, J. Homotopy Relat. Struct. 3 (2008) 245
,[63] Homology of matrix Lie algebras over rings and the Hochschild homology, Uspekhi Mat. Nauk 38 (1983) 217
,[64] Functors and computations in Floer homology with applications, I, Geom. Funct. Anal. 9 (1999) 985 | DOI
,[65] Pre-Calabi–Yau structures and moduli of representations, preprint (2018)
,[66] Periodic symplectic cohomologies, J. Symplectic Geom. 17 (2019) 1513 | DOI
,Cité par Sources :