Hyperbolic groups acting improperly
Geometry & topology, Tome 27 (2023) no. 9, pp. 3387-3460 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We study hyperbolic groups acting on CAT(0) cube complexes. The first main result is a structural result about the Sageev construction, in which we relate quasiconvexity of hyperplane stabilizers with quasiconvexity of cell stabilizers. The second main result generalizes both Agol’s Theorem on cubulated hyperbolic groups and Wise’s Quasiconvex Hierarchy Theorem.

DOI : 10.2140/gt.2023.27.3387
Classification : 20F65, 57M05
Keywords: hyperbolic groups, CAT(0) cube complexes

Groves, Daniel 1 ; Manning, Jason Fox 2

1 Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
2 Department of Mathematics, Cornell University, Ithaca, NY, United States
@article{10_2140_gt_2023_27_3387,
     author = {Groves, Daniel and Manning, Jason Fox},
     title = {Hyperbolic groups acting improperly},
     journal = {Geometry & topology},
     pages = {3387--3460},
     year = {2023},
     volume = {27},
     number = {9},
     doi = {10.2140/gt.2023.27.3387},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3387/}
}
TY  - JOUR
AU  - Groves, Daniel
AU  - Manning, Jason Fox
TI  - Hyperbolic groups acting improperly
JO  - Geometry & topology
PY  - 2023
SP  - 3387
EP  - 3460
VL  - 27
IS  - 9
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3387/
DO  - 10.2140/gt.2023.27.3387
ID  - 10_2140_gt_2023_27_3387
ER  - 
%0 Journal Article
%A Groves, Daniel
%A Manning, Jason Fox
%T Hyperbolic groups acting improperly
%J Geometry & topology
%D 2023
%P 3387-3460
%V 27
%N 9
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3387/
%R 10.2140/gt.2023.27.3387
%F 10_2140_gt_2023_27_3387
Groves, Daniel; Manning, Jason Fox. Hyperbolic groups acting improperly. Geometry & topology, Tome 27 (2023) no. 9, pp. 3387-3460. doi: 10.2140/gt.2023.27.3387

[1] I Agol, The virtual Haken conjecture, Doc. Math. 18 (2013) 1045 | DOI

[2] I Agol, D Groves, J F Manning, Residual finiteness, QCERF and fillings of hyperbolic groups, Geom. Topol. 13 (2009) 1043 | DOI

[3] I Agol, D Groves, J F Manning, An alternate proof of Wise’s malnormal special quotient theorem, Forum Math. Pi 4 (2016) | DOI

[4] M A Armstrong, On the fundamental group of an orbit space, Proc. Cambridge Philos. Soc. 61 (1965) 639 | DOI

[5] N Bergeron, D T Wise, A boundary criterion for cubulation, Amer. J. Math. 134 (2012) 843 | DOI

[6] B H Bowditch, Tight geodesics in the curve complex, Invent. Math. 171 (2008) 281 | DOI

[7] B H Bowditch, Relatively hyperbolic groups, Internat. J. Algebra Comput. 22 (2012) 1250016 | DOI

[8] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[9] R Charney, J Crisp, Relative hyperbolicity and Artin groups, Geom. Dedicata 129 (2007) 1 | DOI

[10] D Cooper, D Futer, Ubiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3–manifolds, Geom. Topol. 23 (2019) 241 | DOI

[11] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes : les groupes hyperboliques de Gromov, 1441, Springer (1990) | DOI

[12] Y Duong, On random groups : the square model at density d < 1∕3 and as quotients of free nilpotent groups, PhD thesis, University of Illinois at Chicago (2017)

[13] E Einstein, D Groves, Relative cubulations and groups with a 2–sphere boundary, Compos. Math. 156 (2020) 862 | DOI

[14] A Genevois, Hyperbolicities in CAT(0) cube complexes, Enseign. Math. 65 (2019) 33 | DOI

[15] A Genevois, Coning-off CAT(0) cube complexes, Ann. Inst. Fourier (Grenoble) 71 (2021) 1535 | DOI

[16] R Gitik, M Mitra, E Rips, M Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321 | DOI

[17] D Groves, J F Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008) 317 | DOI

[18] D Groves, J F Manning, Quasiconvexity and Dehn filling, Amer. J. Math. 143 (2021) 95 | DOI

[19] D Groves, J F Manning, A Sisto, Boundaries of Dehn fillings, Geom. Topol. 23 (2019) 2929 | DOI

[20] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551 | DOI

[21] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[22] J Hempel, 3–manifolds, 86, Princeton Univ. Press (1976) | DOI

[23] G C Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010) 1807 | DOI

[24] G C Hruska, D T Wise, Finiteness properties of cubulated groups, Compos. Math. 150 (2014) 453 | DOI

[25] W Jaco, Lectures on three-manifold topology, 43, Amer. Math. Soc. (1980)

[26] J Kahn, V Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold, Ann. of Math. 175 (2012) 1127 | DOI

[27] I Kapovich, H Short, Greenberg’s theorem for quasiconvex subgroups of word hyperbolic groups, Canad. J. Math. 48 (1996) 1224 | DOI

[28] J F Manning, E Martínez-Pedroza, Separation of relatively quasiconvex subgroups, Pacific J. Math. 244 (2010) 309 | DOI

[29] K Matsuzaki, M Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Univ. Press (1998)

[30] J W Morgan, On Thurston’s uniformization theorem for three-dimensional manifolds, from: "The Smith conjecture" (editors J W Morgan, H Bass), Pure Appl. Math. 112, Academic (1984) 37 | DOI

[31] D V Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007) 295 | DOI

[32] M Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. 71 (1995) 585 | DOI

[33] M Sageev, Codimension-1 subgroups and splittings of groups, J. Algebra 189 (1997) 377 | DOI

[34] G A Swarup, Geometric finiteness and rationality, J. Pure Appl. Algebra 86 (1993) 327 | DOI

[35] H C Tran, On strongly quasiconvex subgroups, Geom. Topol. 23 (2019) 1173 | DOI

[36] D T Wise, The structure of groups with a quasiconvex hierarchy, 209, Princeton Univ. Press (2021) | DOI

Cité par Sources :