The deformation space of geodesic triangulations and generalized Tutte’s embedding theorem
Geometry & topology, Tome 27 (2023) no. 8, pp. 3361-3385.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the contractibility of the deformation space of the geodesic triangulations on a closed surface of negative curvature. This solves an open problem, proposed by Connelly, Henderson, Ho and Starbird (1983), in the case of hyperbolic surfaces. The main part of the proof is a generalization of Tutte’s embedding theorem for closed surfaces of negative curvature.

DOI : 10.2140/gt.2023.27.3361
Keywords: geodesic triangulations, Tutte's embedding

Luo, Yanwen 1 ; Wu, Tianqi 2 ; Zhu, Xiaoping 1

1 Department of Mathematics, Rutgers University, New Brunswick, NJ, United States
2 Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA, United States
@article{GT_2023_27_8_a6,
     author = {Luo, Yanwen and Wu, Tianqi and Zhu, Xiaoping},
     title = {The deformation space of geodesic triangulations and generalized {Tutte{\textquoteright}s} embedding theorem},
     journal = {Geometry & topology},
     pages = {3361--3385},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2023},
     doi = {10.2140/gt.2023.27.3361},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3361/}
}
TY  - JOUR
AU  - Luo, Yanwen
AU  - Wu, Tianqi
AU  - Zhu, Xiaoping
TI  - The deformation space of geodesic triangulations and generalized Tutte’s embedding theorem
JO  - Geometry & topology
PY  - 2023
SP  - 3361
EP  - 3385
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3361/
DO  - 10.2140/gt.2023.27.3361
ID  - GT_2023_27_8_a6
ER  - 
%0 Journal Article
%A Luo, Yanwen
%A Wu, Tianqi
%A Zhu, Xiaoping
%T The deformation space of geodesic triangulations and generalized Tutte’s embedding theorem
%J Geometry & topology
%D 2023
%P 3361-3385
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3361/
%R 10.2140/gt.2023.27.3361
%F GT_2023_27_8_a6
Luo, Yanwen; Wu, Tianqi; Zhu, Xiaoping. The deformation space of geodesic triangulations and generalized Tutte’s embedding theorem. Geometry & topology, Tome 27 (2023) no. 8, pp. 3361-3385. doi : 10.2140/gt.2023.27.3361. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3361/

[1] M Awartani, D W Henderson, Spaces of geodesic triangulations of the sphere, Trans. Amer. Math. Soc. 304 (1987) 721 | DOI

[2] E D Bloch, R Connelly, D W Henderson, The space of simplexwise linear homeomorphisms of a convex 2–disk, Topology 23 (1984) 161 | DOI

[3] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) | DOI

[4] D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) | DOI

[5] P Buser, H Karcher, Gromov’s almost flat manifolds, 81, Soc. Math. France (1981) 148

[6] S S Cairns, Isotopic deformations of geodesic complexes on the 2–sphere and on the plane, Ann. of Math. 45 (1944) 207 | DOI

[7] E W Chambers, J Erickson, P Lin, S Parsa, How to morph graphs on the torus, from: "Proceedings of the 2021 ACM–SIAM symposium on discrete algorithms" (editor D Marx), SIAM (2021) 2759 | DOI

[8] Y Colin De Verdière, Comment rendre géodésique une triangulation d’une surface ?, Enseign. Math. 37 (1991) 201

[9] R Connelly, D W Henderson, C W Ho, M Starbird, On the problems related to linear homeomorphisms, embeddings, and isotopies, from: "Continua, decompositions, manifolds" (editors R H Bing, W T Eaton, M P Starbird), Univ. Texas Press (1983) 229

[10] C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969) 19

[11] J Erickson, P Lin, Planar and toroidal morphs made easier, from: "Graph drawing and network visualization" (editors H C Purchase, I Rutter), Lecture Notes in Comput. Sci. 12868, Springer (2021) 123 | DOI

[12] M S Floater, Mean value coordinates, Comput. Aided Geom. Design 20 (2003) 19 | DOI

[13] M S Floater, One-to-one piecewise linear mappings over triangulations, Math. Comp. 72 (2003) 685 | DOI

[14] M S Floater, C Gotsman, How to morph tilings injectively, J. Comput. Appl. Math. 101 (1999) 117 | DOI

[15] J Gaster, B Loustau, L Monsaingeon, Computing discrete equivariant harmonic maps, preprint (2018)

[16] S J Gortler, C Gotsman, D Thurston, Discrete one-forms on meshes and applications to 3D mesh parameterization, Comput. Aided Geom. Design 23 (2006) 83 | DOI

[17] K Grove, H Karcher, How to conjugate C1–close group actions, Math. Z. 132 (1973) 11 | DOI

[18] J Hass, P Scott, Simplicial energy and simplicial harmonic maps, Asian J. Math. 19 (2015) 593 | DOI

[19] H Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math. 30 (1977) 509 | DOI

[20] H Karcher, Riemannian center of mass and so called karcher mean, preprint (2014)

[21] Y Luo, Spaces of geodesic triangulations of surfaces, Discrete Comput. Geom. 68 (2022) 709 | DOI

[22] Y Luo, T Wu, X Zhu, The deformation spaces of geodesic triangulations of flat tori, preprint (2021)

[23] S Smale, Diffeomorphisms of the 2–sphere, Proc. Amer. Math. Soc. 10 (1959) 621 | DOI

[24] W T Tutte, How to draw a graph, Proc. London Math. Soc. 13 (1963) 743 | DOI

Cité par Sources :