Anosov representations with Lipschitz limit set
Geometry & topology, Tome 27 (2023) no. 8, pp. 3303-3360.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study Anosov representations whose limit set has intermediate regularity, namely is a Lipschitz submanifold of a flag manifold. We introduce an explicit linear functional, the unstable Jacobian, whose orbit growth rate is integral on this class of representations. We prove that many interesting higher-rank representations, including Θ–positive representations, belong to this class, and establish several applications to rigidity results on the orbit growth rate in the symmetric space.

DOI : 10.2140/gt.2023.27.3303
Keywords: Anosov representations, Patterson–Sullivan measures

Pozzetti, Maria Beatrice 1 ; Sambarino, Andrés 2 ; Wienhard, Anna 3

1 Mathematical Institute, Heidelberg University, Heidelberg, Germany
2 IMJ-PRG, Sorbonne Université, CNRS, Paris, France
3 Mathematisches Institut, Universität Heidelberg, Heidelberg, Germany
@article{GT_2023_27_8_a5,
     author = {Pozzetti, Maria Beatrice and Sambarino, Andr\'es and Wienhard, Anna},
     title = {Anosov representations with {Lipschitz} limit set},
     journal = {Geometry & topology},
     pages = {3303--3360},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2023},
     doi = {10.2140/gt.2023.27.3303},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3303/}
}
TY  - JOUR
AU  - Pozzetti, Maria Beatrice
AU  - Sambarino, Andrés
AU  - Wienhard, Anna
TI  - Anosov representations with Lipschitz limit set
JO  - Geometry & topology
PY  - 2023
SP  - 3303
EP  - 3360
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3303/
DO  - 10.2140/gt.2023.27.3303
ID  - GT_2023_27_8_a5
ER  - 
%0 Journal Article
%A Pozzetti, Maria Beatrice
%A Sambarino, Andrés
%A Wienhard, Anna
%T Anosov representations with Lipschitz limit set
%J Geometry & topology
%D 2023
%P 3303-3360
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3303/
%R 10.2140/gt.2023.27.3303
%F GT_2023_27_8_a5
Pozzetti, Maria Beatrice; Sambarino, Andrés; Wienhard, Anna. Anosov representations with Lipschitz limit set. Geometry & topology, Tome 27 (2023) no. 8, pp. 3303-3360. doi : 10.2140/gt.2023.27.3303. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3303/

[1] T Barbot, Three-dimensional Anosov flag manifolds, Geom. Topol. 14 (2010) 153 | DOI

[2] T Barbot, Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Differential Geom. 101 (2015) 1

[3] T Barbot, Q Mérigot, Anosov AdS representations are quasi-Fuchsian, Groups Geom. Dyn. 6 (2012) 441 | DOI

[4] Y Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI

[5] Y Benoist, Convexes divisibles, I, from: "Algebraic groups and arithmetic" (editors S G Dani, G Prasad), Tata Inst. Fund. Res. (2004) 339

[6] J Bochi, R Potrie, A Sambarino, Anosov representations and dominated splittings, J. Eur. Math. Soc. 21 (2019) 3343 | DOI

[7] R Bowen, Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 11 | DOI

[8] S B Bradlow, O García-Prada, P B Gothen, Deformations of maximal representations in Sp(4, R), Q. J. Math. 63 (2012) 795 | DOI

[9] M Bridgeman, R Canary, F Labourie, A Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI

[10] M Burger, A Iozzi, F Labourie, A Wienhard, Maximal representations of surface groups : symplectic Anosov structures, Pure Appl. Math. Q. 1 (2005) 543 | DOI

[11] M Burger, A Iozzi, A Wienhard, Tight homomorphisms and Hermitian symmetric spaces, Geom. Funct. Anal. 19 (2009) 678 | DOI

[12] M Burger, A Iozzi, A Wienhard, Surface group representations with maximal Toledo invariant, Ann. of Math. 172 (2010) 517 | DOI

[13] L Carvajales, Counting problems for special-orthogonal Anosov representations, Ann. Inst. Fourier (Grenoble) 70 (2020) 1199 | DOI

[14] J L Clerc, B Ørsted, The Maslov index revisited, Transform. Groups 6 (2001) 303 | DOI

[15] B Collier, N Tholozan, J Toulisse, The geometry of maximal representations of surface groups into SO0(2,n), Duke Math. J. 168 (2019) 2873 | DOI

[16] J Danciger, F Guéritaud, F Kassel, Convex cocompactness in pseudo-Riemannian hyperbolic spaces, Geom. Dedicata 192 (2018) 87 | DOI

[17] J Danciger, F Guéritaud, F Kassel, Proper affine actions for right-angled Coxeter groups, Duke Math. J. 169 (2020) 2231 | DOI

[18] S Dey, M Kapovich, Patterson–Sullivan theory for Anosov subgroups, Trans. Amer. Math. Soc. 375 (2022) 8687 | DOI

[19] A Douady, J Oesterlé, Dimension de Hausdorff des attracteurs, C. R. Acad. Sci. Paris Sér. A-B 290 (1980) 1135

[20] L C Evans, R F Gariepy, Measure theory and fine properties of functions, CRC (2015) | DOI

[21] K J Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc. 103 (1988) 339 | DOI

[22] H Federer, Geometric measure theory, 153, Springer (1969) | DOI

[23] O Glorieux, D Monclair, Regularity of limit sets of AdS quasi-Fuchsian groups, preprint (2018)

[24] O Glorieux, D Monclair, Critical exponent and Hausdorff dimension in pseudo-Riemannian hyperbolic geometry, Int. Math. Res. Not. 2021 (2021) 13661 | DOI

[25] O Glorieux, D Monclair, N Tholozan, Hausdorff dimension of limit sets for projective Anosov representations, preprint (2019)

[26] O Guichard, A Wienhard, Topological invariants of Anosov representations, J. Topol. 3 (2010) 578 | DOI

[27] O Guichard, A Wienhard, Positivity and higher Teichmüller theory, from: "European Congress of Mathematics" (editors V Mehrmann, M Skutella), Eur. Math. Soc. (2018) 289 | DOI

[28] O Hamlet, M B Pozzetti, Classification of tight homomorphisms, preprint (2014)

[29] Harish-Chandra, Representations of semisimple Lie groups, VI : Integrable and square-integrable representations, Amer. J. Math. 78 (1956) 564 | DOI

[30] J E Humphreys, Linear algebraic groups, 21, Springer (1975) | DOI

[31] J L Kaplan, J A Yorke, Chaotic behavior of multidimensional difference equations, from: "Functional differential equations and approximation of fixed points" (editors H O Peitgen, H O Walther), Lecture Notes in Math. 730, Springer (1979) 204 | DOI

[32] I Kapovich, N Benakli, Boundaries of hyperbolic groups, from: "Combinatorial and geometric group theory" (editors S Cleary, R Gilman, A G Myasnikov, V Shpilrain), Contemp. Math. 296, Amer. Math. Soc. (2002) 39 | DOI

[33] M Kapovich, B Leeb, J Porti, Morse actions of discrete groups on symmetric space, preprint (2014)

[34] M Kapovich, B Leeb, J Porti, A Morse lemma for quasigeodesics in symmetric spaces and Euclidean buildings, Geom. Topol. 22 (2018) 3827 | DOI

[35] F Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI

[36] F Ledrappier, Structure au bord des variétés à courbure négative, Sémin. Théor. Spectr. Géom. 13 (1995) 97 | DOI

[37] G Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007) 3 | DOI

[38] R Potrie, A Sambarino, Eigenvalues and entropy of a Hitchin representation, Invent. Math. 209 (2017) 885 | DOI

[39] M B Pozzetti, A Sambarino, A Wienhard, Conformality for a robust class of non-conformal attractors, J. Reine Angew. Math. 774 (2021) 1 | DOI

[40] J F Quint, Cônes limites des sous-groupes discrets des groupes réductifs sur un corps local, Transform. Groups 7 (2002) 247 | DOI

[41] J F Quint, Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv. 77 (2002) 563 | DOI

[42] J F Quint, Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal. 12 (2002) 776 | DOI

[43] J F Quint, An overview of Patterson–Sullivan theory, (2006)

[44] A Sambarino, Hyperconvex representations and exponential growth, Ergodic Theory Dynam. Systems 34 (2014) 986 | DOI

[45] A Sambarino, The orbital counting problem for hyperconvex representations, Ann. Inst. Fourier (Grenoble) 65 (2015) 1755 | DOI

[46] D Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 171 | DOI

[47] J Tits, Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971) 196 | DOI

[48] T Zhang, A Zimmer, Regularity of limit sets of Anosov representations, preprint (2019)

Cité par Sources :