Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study Anosov representations whose limit set has intermediate regularity, namely is a Lipschitz submanifold of a flag manifold. We introduce an explicit linear functional, the unstable Jacobian, whose orbit growth rate is integral on this class of representations. We prove that many interesting higher-rank representations, including –positive representations, belong to this class, and establish several applications to rigidity results on the orbit growth rate in the symmetric space.
Pozzetti, Maria Beatrice 1 ; Sambarino, Andrés 2 ; Wienhard, Anna 3
@article{GT_2023_27_8_a5, author = {Pozzetti, Maria Beatrice and Sambarino, Andr\'es and Wienhard, Anna}, title = {Anosov representations with {Lipschitz} limit set}, journal = {Geometry & topology}, pages = {3303--3360}, publisher = {mathdoc}, volume = {27}, number = {8}, year = {2023}, doi = {10.2140/gt.2023.27.3303}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3303/} }
TY - JOUR AU - Pozzetti, Maria Beatrice AU - Sambarino, Andrés AU - Wienhard, Anna TI - Anosov representations with Lipschitz limit set JO - Geometry & topology PY - 2023 SP - 3303 EP - 3360 VL - 27 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3303/ DO - 10.2140/gt.2023.27.3303 ID - GT_2023_27_8_a5 ER -
%0 Journal Article %A Pozzetti, Maria Beatrice %A Sambarino, Andrés %A Wienhard, Anna %T Anosov representations with Lipschitz limit set %J Geometry & topology %D 2023 %P 3303-3360 %V 27 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3303/ %R 10.2140/gt.2023.27.3303 %F GT_2023_27_8_a5
Pozzetti, Maria Beatrice; Sambarino, Andrés; Wienhard, Anna. Anosov representations with Lipschitz limit set. Geometry & topology, Tome 27 (2023) no. 8, pp. 3303-3360. doi : 10.2140/gt.2023.27.3303. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3303/
[1] Three-dimensional Anosov flag manifolds, Geom. Topol. 14 (2010) 153 | DOI
,[2] Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Differential Geom. 101 (2015) 1
,[3] Anosov AdS representations are quasi-Fuchsian, Groups Geom. Dyn. 6 (2012) 441 | DOI
, ,[4] Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997) 1 | DOI
,[5] Convexes divisibles, I, from: "Algebraic groups and arithmetic" (editors S G Dani, G Prasad), Tata Inst. Fund. Res. (2004) 339
,[6] Anosov representations and dominated splittings, J. Eur. Math. Soc. 21 (2019) 3343 | DOI
, , ,[7] Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 11 | DOI
,[8] Deformations of maximal representations in Sp(4, R), Q. J. Math. 63 (2012) 795 | DOI
, , ,[9] The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015) 1089 | DOI
, , , ,[10] Maximal representations of surface groups : symplectic Anosov structures, Pure Appl. Math. Q. 1 (2005) 543 | DOI
, , , ,[11] Tight homomorphisms and Hermitian symmetric spaces, Geom. Funct. Anal. 19 (2009) 678 | DOI
, , ,[12] Surface group representations with maximal Toledo invariant, Ann. of Math. 172 (2010) 517 | DOI
, , ,[13] Counting problems for special-orthogonal Anosov representations, Ann. Inst. Fourier (Grenoble) 70 (2020) 1199 | DOI
,[14] The Maslov index revisited, Transform. Groups 6 (2001) 303 | DOI
, ,[15] The geometry of maximal representations of surface groups into SO0(2,n), Duke Math. J. 168 (2019) 2873 | DOI
, , ,[16] Convex cocompactness in pseudo-Riemannian hyperbolic spaces, Geom. Dedicata 192 (2018) 87 | DOI
, , ,[17] Proper affine actions for right-angled Coxeter groups, Duke Math. J. 169 (2020) 2231 | DOI
, , ,[18] Patterson–Sullivan theory for Anosov subgroups, Trans. Amer. Math. Soc. 375 (2022) 8687 | DOI
, ,[19] Dimension de Hausdorff des attracteurs, C. R. Acad. Sci. Paris Sér. A-B 290 (1980) 1135
, ,[20] Measure theory and fine properties of functions, CRC (2015) | DOI
, ,[21] The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc. 103 (1988) 339 | DOI
,[22] Geometric measure theory, 153, Springer (1969) | DOI
,[23] Regularity of limit sets of AdS quasi-Fuchsian groups, preprint (2018)
, ,[24] Critical exponent and Hausdorff dimension in pseudo-Riemannian hyperbolic geometry, Int. Math. Res. Not. 2021 (2021) 13661 | DOI
, ,[25] Hausdorff dimension of limit sets for projective Anosov representations, preprint (2019)
, , ,[26] Topological invariants of Anosov representations, J. Topol. 3 (2010) 578 | DOI
, ,[27] Positivity and higher Teichmüller theory, from: "European Congress of Mathematics" (editors V Mehrmann, M Skutella), Eur. Math. Soc. (2018) 289 | DOI
, ,[28] Classification of tight homomorphisms, preprint (2014)
, ,[29] Representations of semisimple Lie groups, VI : Integrable and square-integrable representations, Amer. J. Math. 78 (1956) 564 | DOI
,[30] Linear algebraic groups, 21, Springer (1975) | DOI
,[31] Chaotic behavior of multidimensional difference equations, from: "Functional differential equations and approximation of fixed points" (editors H O Peitgen, H O Walther), Lecture Notes in Math. 730, Springer (1979) 204 | DOI
, ,[32] Boundaries of hyperbolic groups, from: "Combinatorial and geometric group theory" (editors S Cleary, R Gilman, A G Myasnikov, V Shpilrain), Contemp. Math. 296, Amer. Math. Soc. (2002) 39 | DOI
, ,[33] Morse actions of discrete groups on symmetric space, preprint (2014)
, , ,[34] A Morse lemma for quasigeodesics in symmetric spaces and Euclidean buildings, Geom. Topol. 22 (2018) 3827 | DOI
, , ,[35] Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006) 51 | DOI
,[36] Structure au bord des variétés à courbure négative, Sémin. Théor. Spectr. Géom. 13 (1995) 97 | DOI
,[37] Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007) 3 | DOI
,[38] Eigenvalues and entropy of a Hitchin representation, Invent. Math. 209 (2017) 885 | DOI
, ,[39] Conformality for a robust class of non-conformal attractors, J. Reine Angew. Math. 774 (2021) 1 | DOI
, , ,[40] Cônes limites des sous-groupes discrets des groupes réductifs sur un corps local, Transform. Groups 7 (2002) 247 | DOI
,[41] Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv. 77 (2002) 563 | DOI
,[42] Mesures de Patterson–Sullivan en rang supérieur, Geom. Funct. Anal. 12 (2002) 776 | DOI
,[43] An overview of Patterson–Sullivan theory, (2006)
,[44] Hyperconvex representations and exponential growth, Ergodic Theory Dynam. Systems 34 (2014) 986 | DOI
,[45] The orbital counting problem for hyperconvex representations, Ann. Inst. Fourier (Grenoble) 65 (2015) 1755 | DOI
,[46] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979) 171 | DOI
,[47] Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971) 196 | DOI
,[48] Regularity of limit sets of Anosov representations, preprint (2019)
, ,Cité par Sources :