Weighted K–stability and coercivity with applications to extremal Kähler and Sasaki metrics
Geometry & topology, Tome 27 (2023) no. 8, pp. 3229-3302.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a compact weighted extremal Kähler manifold, as defined by the third author (2019), has coercive weighted Mabuchi energy with respect to a maximal complex torus 𝕋 in the reduced group of complex automorphisms. This provides a vast extension and a unification of a number of results concerning Kähler metrics satisfying special curvature conditions, including Kähler metrics with constant scalar curvature, extremal Kähler metrics, Kähler–Ricci solitons, and their weighted extensions. Our result implies the strict positivity of the weighted Donaldson–Futaki invariant of any nonproduct 𝕋–equivariant smooth Kähler test configuration with reduced central fibre, a property known as 𝕋–equivariant weighted K–polystability on such test configurations. It also yields the 𝕋–uniform weighted K–stability on the class of smooth 𝕋–equivariant polarized test configurations with reduced central fibre. For a class of fibrations constructed from principal torus bundles over a product of Hodge cscK manifolds, we use our results in conjunction with results of Chen and Cheng (2021), He (2019) and Han and Li (2022) in order to characterize the existence of extremal Kähler metrics and Calabi–Yau cones associated to the total space, in terms of the coercivity of the weighted Mabuchi energy of the fibre. This yields a new existence result for Sasaki–Einstein metrics on certain Fano toric fibrations, extending the results of Futaki, Ono and Wang (2009) in the toric Fano case, and of Mabuchi and Nakagawa (2013) in the case of Fano 1–bundles.

DOI : 10.2140/gt.2023.27.3229
Keywords: Sasaki and Kähler manifolds, affine cones, special metrics, weighted K–stability.

Apostolov, Vestislav 1 ; Jubert, Simon 2 ; Lahdili, Abdellah 3

1 Département de Mathématiques, Université du Québec à Montréal, Montréal, QC, Canada, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
2 Département de Mathématiques, Université du Québec à Montréal, Montréal, QC, Canada, Institut de Mathématiques de Toulouse, Toulouse, France
3 Department of Mathematics, Aarhus University, Aarhus, Denmark
@article{GT_2023_27_8_a4,
     author = {Apostolov, Vestislav and Jubert, Simon and Lahdili, Abdellah},
     title = {Weighted {K{\textendash}stability} and coercivity with applications to extremal {K\"ahler} and {Sasaki} metrics},
     journal = {Geometry & topology},
     pages = {3229--3302},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2023},
     doi = {10.2140/gt.2023.27.3229},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3229/}
}
TY  - JOUR
AU  - Apostolov, Vestislav
AU  - Jubert, Simon
AU  - Lahdili, Abdellah
TI  - Weighted K–stability and coercivity with applications to extremal Kähler and Sasaki metrics
JO  - Geometry & topology
PY  - 2023
SP  - 3229
EP  - 3302
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3229/
DO  - 10.2140/gt.2023.27.3229
ID  - GT_2023_27_8_a4
ER  - 
%0 Journal Article
%A Apostolov, Vestislav
%A Jubert, Simon
%A Lahdili, Abdellah
%T Weighted K–stability and coercivity with applications to extremal Kähler and Sasaki metrics
%J Geometry & topology
%D 2023
%P 3229-3302
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3229/
%R 10.2140/gt.2023.27.3229
%F GT_2023_27_8_a4
Apostolov, Vestislav; Jubert, Simon; Lahdili, Abdellah. Weighted K–stability and coercivity with applications to extremal Kähler and Sasaki metrics. Geometry & topology, Tome 27 (2023) no. 8, pp. 3229-3302. doi : 10.2140/gt.2023.27.3229. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3229/

[1] V Apostolov, The Kähler geometry of toric manifolds, (2022)

[2] V Apostolov, D M J Calderbank, The CR geometry of weighted extremal Kähler and Sasaki metrics, Math. Ann. 379 (2021) 1047 | DOI

[3] V Apostolov, D M J Calderbank, P Gauduchon, Hamiltonian 2–forms in Kähler geometry, I : General theory, J. Differential Geom. 73 (2006) 359

[4] V Apostolov, D M J Calderbank, P Gauduchon, C W Tønnesen-Friedman, Hamiltonian 2–forms in Kähler geometry, II : Global classification, J. Differential Geom. 68 (2004) 277

[5] V Apostolov, D M J Calderbank, P Gauduchon, C W Tønnesen-Friedman, Hamiltonian 2–forms in Kähler geometry, IV : Weakly Bochner-flat Kähler manifolds, Comm. Anal. Geom. 16 (2008) 91 | DOI

[6] V Apostolov, D M J Calderbank, P Gauduchon, C W Tønnesen-Friedman, Extremal Kähler metrics on projective bundles over a curve, Adv. Math. 227 (2011) 2385 | DOI

[7] V Apostolov, D M J Calderbank, E Legendre, Weighted K–stability of polarized varieties and extremality of Sasaki manifolds, Adv. Math. 391 (2021) 107969 | DOI

[8] C Arezzo, F Pacard, M Singer, Extremal metrics on blowups, Duke Math. J. 157 (2011) 1 | DOI

[9] M F Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982) 1 | DOI

[10] R J Berman, K–polystability of Q–Fano varieties admitting Kähler–Einstein metrics, Invent. Math. 203 (2016) 973 | DOI

[11] R J Berman, B Berndtsson, Convexity of the K–energy on the space of Kähler metrics and uniqueness of extremal metrics, J. Amer. Math. Soc. 30 (2017) 1165 | DOI

[12] R J Berman, S Boucksom, P Eyssidieux, V Guedj, A Zeriahi, Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties, J. Reine Angew. Math. 751 (2019) 27 | DOI

[13] R J Berman, T Darvas, C H Lu, Convexity of the extended K–energy and the large time behavior of the weak Calabi flow, Geom. Topol. 21 (2017) 2945 | DOI

[14] R J Berman, T Darvas, C H Lu, Regularity of weak minimizers of the K–energy and applications to properness and K–stability, Ann. Sci. Éc. Norm. Supér. 53 (2020) 267 | DOI

[15] R J Berman, D W Nyström, Complex optimal transport and the pluripotential theory of Kähler–Ricci solitons, preprint (2014)

[16] Z Błocki, On geodesics in the space of Kähler metrics, from: "Advances in geometric analysis" (editors S Janeczko, J Li, D H Phong), Adv. Lect. Math. 21, International (2012) 3

[17] Z Błocki, S Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007) 2089 | DOI

[18] S Boucksom, T Hisamoto, M Jonsson, Uniform K–stability, Duistermaat–Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble) 67 (2017) 743 | DOI

[19] C P Boyer, K Galicki, S R Simanca, Canonical Sasakian metrics, Comm. Math. Phys. 279 (2008) 705 | DOI

[20] C P Boyer, C W Tønnesen-Friedman, The Sasaki join, Hamiltonian 2–forms, and constant scalar curvature, J. Geom. Anal. 26 (2016) 1023 | DOI

[21] E Calabi, Extremal Kähler metrics, from: "Seminar on differential geometry" (editor S T Yau), Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 259 | DOI

[22] X Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000) 189

[23] X Chen, J Cheng, On the constant scalar curvature Kähler metrics, II : Existence results, J. Amer. Math. Soc. 34 (2021) 937 | DOI

[24] X Chen, M Paun, Y Zeng, On deformation of extremal metrics, preprint (2015)

[25] J Chu, V Tosatti, B Weinkove, On the C1,1 regularity of geodesics in the space of Kähler metrics, Ann. PDE 3 (2017) 15 | DOI

[26] A S Dancer, M Y Wang, On Ricci solitons of cohomogeneity one, Ann. Global Anal. Geom. 39 (2011) 259 | DOI

[27] T Darvas, The Mabuchi geometry of finite energy classes, Adv. Math. 285 (2015) 182 | DOI

[28] T Darvas, The Mabuchi completion of the space of Kähler potentials, Amer. J. Math. 139 (2017) 1275 | DOI

[29] T Darvas, Y A Rubinstein, Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc. 30 (2017) 347 | DOI

[30] V Datar, G Székelyhidi, Kähler–Einstein metrics along the smooth continuity method, Geom. Funct. Anal. 26 (2016) 975 | DOI

[31] T Delcroix, K–stability of Fano spherical varieties, Ann. Sci. Éc. Norm. Supér. 53 (2020) 615 | DOI

[32] F Delgove, Kähler–Ricci solitons on horospherical variety, preprint (2017)

[33] R Dervan, Relative K–stability for Kähler manifolds, Math. Ann. 372 (2018) 859 | DOI

[34] R Dervan, J Ross, K–stability for Kähler manifolds, Math. Res. Lett. 24 (2017) 689 | DOI

[35] R Dervan, L M Sektnan, Optimal symplectic connections on holomorphic submersions, Comm. Pure Appl. Math. 74 (2021) 2132 | DOI

[36] S K Donaldson, Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005) 453

[37] S K Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, from: "Handbook of geometric analysis" (editors L Ji, P Li, R Schoen, L Simon), Adv. Lect. Math. 7, International (2008) 29

[38] A Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978) 225 | DOI

[39] A Futaki, H Ono, Conformally Einstein–Maxwell Kähler metrics and structure of the automorphism group, Math. Z. 292 (2019) 571 | DOI

[40] A Futaki, H Ono, G Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki–Einstein manifolds, J. Differential Geom. 83 (2009) 585

[41] P Gauduchon, Calabi’s extremal metrics : an elementary introduction, lecture notes, in preparation

[42] J P Gauntlett, D Martelli, J Sparks, D Waldram, A new infinite class of Sasaki–Einstein manifolds, Adv. Theor. Math. Phys. 8 (2004) 987 | DOI

[43] V Guedj, A Zeriahi, The weighted Monge–Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007) 442 | DOI

[44] V Guillemin, S Sternberg, Convexity properties of the moment mapping, Invent. Math. 67 (1982) 491 | DOI

[45] J Han, C Li, On the Yau–Tian–Donaldson conjecture for generalized Kähler–Ricci soliton equations, Comm. Pure Appl. Math. 76 (2023) 1793 | DOI

[46] Y Hashimoto, Existence of twisted constant scalar curvature Kähler metrics with a large twist, Math. Z. 292 (2019) 791 | DOI

[47] W He, On Calabi’s extremal metric and properness, Trans. Amer. Math. Soc. 372 (2019) 5595 | DOI

[48] W He, J Li, Geometric pluripotential theory on Sasaki manifolds, J. Geom. Anal. 31 (2021) 1093 | DOI

[49] T Hisamoto, Stability and coercivity for toric polarizations, preprint (2016)

[50] E Inoue, Constant μ–scalar curvature Kähler metric–formulation and foundational results, J. Geom. Anal. 32 (2022) 145 | DOI

[51] D Jerison, J M Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988) 1 | DOI

[52] S Jubert, A Yau–Tian–Donaldson correspondence on a class of toric fibrations, preprint (2021)

[53] N Koiso, On rotationally symmetric Hamilton’s equation for Kähler–Einstein metrics, from: "Recent topics in differential and analytic geometry" (editor T Ochiai), Adv. Stud. Pure Math. 18, Academic (1990) 327 | DOI

[54] A Lahdili, Automorphisms and deformations of conformally Kähler, Einstein–Maxwell metrics, J. Geom. Anal. 29 (2019) 542 | DOI

[55] A Lahdili, Kähler metrics with constant weighted scalar curvature and weighted K–stability, Proc. Lond. Math. Soc. 119 (2019) 1065 | DOI

[56] A Lahdili, Convexity of the weighted Mabuchi functional and the uniqueness of weighted extremal metrics, preprint (2020)

[57] C Li, G–uniform stability and Kähler–Einstein metrics on Fano varieties, Invent. Math. 227 (2022) 661 | DOI

[58] T Mabuchi, Kähler–Einstein metrics for manifolds with nonvanishing Futaki character, Tohoku Math. J. 53 (2001) 171 | DOI

[59] T Mabuchi, Multiplier Hermitian structures on Kähler manifolds, Nagoya Math. J. 170 (2003) 73 | DOI

[60] T Mabuchi, Y Nakagawa, New examples of Sasaki–Einstein manifolds, Tohoku Math. J. 65 (2013) 243 | DOI

[61] D Martelli, J Sparks, S T Yau, Sasaki–Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008) 611 | DOI

[62] Y Odaka, A generalization of the Ross–Thomas slope theory, Osaka J. Math. 50 (2013) 171

[63] F Podestà, A Spiro, Kähler–Ricci solitons on homogeneous toric bundles, J. Reine Angew. Math. 642 (2010) 109 | DOI

[64] S Semmes, Complex Monge–Ampère and symplectic manifolds, Amer. J. Math. 114 (1992) 495 | DOI

[65] Z Sjöström Dyrefelt, K–semistability of cscK manifolds with transcendental cohomology class, J. Geom. Anal. 28 (2018) 2927 | DOI

[66] Z Sjöström Dyrefelt, On K–polystability of cscK manifolds with transcendental cohomology class, Int. Math. Res. Not. 2020 (2020) 2769 | DOI

[67] J Stoppa, K–stability of constant scalar curvature Kähler manifolds, Adv. Math. 221 (2009) 1397 | DOI

[68] J Stoppa, G Székelyhidi, Relative K–stability of extremal metrics, J. Eur. Math. Soc. 13 (2011) 899 | DOI

[69] A Swann, Twisting Hermitian and hypercomplex geometries, Duke Math. J. 155 (2010) 403 | DOI

[70] G Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997) 1 | DOI

[71] G Tian, X Zhu, A new holomorphic invariant and uniqueness of Kähler–Ricci solitons, Comment. Math. Helv. 77 (2002) 297 | DOI

[72] X Wang, Height and GIT weight, Math. Res. Lett. 19 (2012) 909 | DOI

[73] X J Wang, X Zhu, Kähler–Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004) 87 | DOI

Cité par Sources :