Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II : Branching foliations
Geometry & topology, Tome 27 (2023) no. 8, pp. 3095-3181.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study 3–dimensional partially hyperbolic diffeomorphisms that are homotopic to the identity, focusing on the geometry and dynamics of Burago and Ivanov’s center stable and center unstable branching foliations. This extends our previous study of the true foliations that appear in the dynamically coherent case. We complete the classification of such diffeomorphisms in Seifert fibered manifolds. In hyperbolic manifolds, we show that any such diffeomorphism is either dynamically coherent and has a power that is a discretized Anosov flow, or is of a new potential class called a double translation.

DOI : 10.2140/gt.2023.27.3095
Keywords: partial hyperbolicity, 3–manifolds, foliations

Barthelmé, Thomas 1 ; Fenley, Sérgio R 2 ; Frankel, Steven 3 ; Potrie, Rafael 4

1 Department of Mathematics and Statistics, Queen’s University, Kingston, ON, Canada
2 Department of Mathematics, Florida State University, Tallahassee, FL, United States
3 Department of Mathematics, Washington University in St. Louis, St Louis, MO, United States
4 Facultad de Ciencias – Centro de Matemática, Universidad de la República, Montevideo, Uruguay
@article{GT_2023_27_8_a2,
     author = {Barthelm\'e, Thomas and Fenley, S\'ergio R and Frankel, Steven and Potrie, Rafael},
     title = {Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, {II} : {Branching} foliations},
     journal = {Geometry & topology},
     pages = {3095--3181},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2023},
     doi = {10.2140/gt.2023.27.3095},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3095/}
}
TY  - JOUR
AU  - Barthelmé, Thomas
AU  - Fenley, Sérgio R
AU  - Frankel, Steven
AU  - Potrie, Rafael
TI  - Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II : Branching foliations
JO  - Geometry & topology
PY  - 2023
SP  - 3095
EP  - 3181
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3095/
DO  - 10.2140/gt.2023.27.3095
ID  - GT_2023_27_8_a2
ER  - 
%0 Journal Article
%A Barthelmé, Thomas
%A Fenley, Sérgio R
%A Frankel, Steven
%A Potrie, Rafael
%T Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II : Branching foliations
%J Geometry & topology
%D 2023
%P 3095-3181
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3095/
%R 10.2140/gt.2023.27.3095
%F GT_2023_27_8_a2
Barthelmé, Thomas; Fenley, Sérgio R; Frankel, Steven; Potrie, Rafael. Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II : Branching foliations. Geometry & topology, Tome 27 (2023) no. 8, pp. 3095-3181. doi : 10.2140/gt.2023.27.3095. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3095/

[1] T Barbot, Actions de groupes sur les 1–variétés non séparées et feuilletages de codimension un, Ann. Fac. Sci. Toulouse Math. 7 (1998) 559 | DOI

[2] M Barge, J Franks, Recurrent sets for planar homeomorphisms, from: "From topology to computation : proceedings of the Smalefest" (editors M W Hirsch, J E Marsden, M Shub), Springer (1993) 186 | DOI

[3] T Barthelmé, S R Fenley, S Frankel, R Potrie, Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, I : The dynamically coherent case, preprint (2019)

[4] T Barthelmé, S R Fenley, S Frankel, R Potrie, Dynamical incoherence for a large class of partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems 41 (2021) 3227 | DOI

[5] M Boileau, J P Otal, Scindements de Heegaard et groupe des homéotopies des petites variétés de Seifert, Invent. Math. 106 (1991) 85 | DOI

[6] C Bonatti, L J Díaz, M Viana, Dynamics beyond uniform hyperbolicity: a global geometric and probabilistic perspective, 102, Springer (2005) | DOI

[7] C Bonatti, A Gogolev, A Hammerlindl, R Potrie, Anomalous partially hyperbolic diffeomorphisms, III : Abundance and incoherence, Geom. Topol. 24 (2020) 1751 | DOI

[8] C Bonatti, A Wilkinson, Transitive partially hyperbolic diffeomorphisms on 3–manifolds, Topology 44 (2005) 475 | DOI

[9] M Brin, D Burago, S Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3–torus, J. Mod. Dyn. 3 (2009) 1 | DOI

[10] D Burago, S Ivanov, Partially hyperbolic diffeomorphisms of 3–manifolds with abelian fundamental groups, J. Mod. Dyn. 2 (2008) 541 | DOI

[11] D Calegari, The geometry of R–covered foliations, Geom. Topol. 4 (2000) 457 | DOI

[12] D Calegari, Foliations and the geometry of 3–manifolds, Oxford Univ. Press (2007)

[13] A Candel, Uniformization of surface laminations, Ann. Sci. École Norm. Sup. 26 (1993) 489 | DOI

[14] A Candel, L Conlon, Foliations, I, 23, Amer. Math. Soc. (2000) | DOI

[15] P D Carrasco, F Rodriguez-Hertz, J Rodriguez-Hertz, R Ures, Partially hyperbolic dynamics in dimension three, Ergodic Theory Dynam. Systems 38 (2018) 2801 | DOI

[16] A Casson, D Jungreis, Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441 | DOI

[17] S R Fenley, Foliations, topology and geometry of 3–manifolds : R–covered foliations and transverse pseudo-Anosov flows, Comment. Math. Helv. 77 (2002) 415 | DOI

[18] S R Fenley, R Potrie, Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3–manifolds, Adv. Math. 401 (2022) 108315 | DOI

[19] J M Franks, Homology and dynamical systems, 49, Amer. Math. Soc. (1982) | DOI

[20] D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447 | DOI

[21] D Gabai, G R Meyerhoff, N Thurston, Homotopy hyperbolic 3–manifolds are hyperbolic, Ann. of Math. 157 (2003) 335 | DOI

[22] A Hammerlindl, R Potrie, Pointwise partial hyperbolicity in three-dimensional nilmanifolds, J. Lond. Math. Soc. 89 (2014) 853 | DOI

[23] A Hammerlindl, R Potrie, Classification of partially hyperbolic diffeomorphisms in 3–manifolds with solvable fundamental group, J. Topol. 8 (2015) 842 | DOI

[24] A Hammerlindl, R Potrie, Partial hyperbolicity and classification: a survey, Ergodic Theory Dynam. Systems 38 (2018) 401 | DOI

[25] A Hammerlindl, R Potrie, M Shannon, Seifert manifolds admitting partially hyperbolic diffeomorphisms, J. Mod. Dyn. 12 (2018) 193 | DOI

[26] G Hector, U Hirsch, Introduction to the geometry of foliations, B : Foliations of codimension one, E3, Vieweg Sohn (1987) | DOI

[27] F R Hertz, J R Hertz, R Ures, Center-unstable foliations do not have compact leaves, Math. Res. Lett. 23 (2016) 1819 | DOI

[28] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge Univ. Press (1995) | DOI

[29] R Potrie, Partial hyperbolicity and foliations in T3, J. Mod. Dyn. 9 (2015) 81 | DOI

[30] R Potrie, Robust dynamics, invariant structures and topological classification, from: "Proceedings of the International Congress of Mathematicians, III : Invited lectures" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 2063

[31] F Rodriguez Hertz, M A Rodriguez Hertz, R Ures, A non-dynamically coherent example on T3, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33 (2016) 1023 | DOI

[32] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401 | DOI

[33] W P Thurston, Three-manifolds, foliations and circles, I, preprint (1997)

[34] J L Tollefson, Involutions of Seifert fiber spaces, Pacific J. Math. 74 (1978) 519 | DOI

[35] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. 87 (1968) 56 | DOI

Cité par Sources :