AGT relations for sheaves on surfaces
Geometry & topology, Tome 27 (2023) no. 8, pp. 3061-3094.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We consider a natural generalization of the Carlsson–Okounkov Ext operator on the K–theory groups of the moduli spaces of stable sheaves on a smooth projective surface. We compute the commutation relations between the Ext operator and the action of the deformed W–algebra on K–theory, which was developed by the author in previous work. The conclusion is that the Ext operator is closely related to a vertex operator, thus giving a mathematical incarnation of the Alday–Gaiotto–Tachikawa correspondence for a general algebraic surface.

DOI : 10.2140/gt.2023.27.3061
Keywords: moduli spaces of sheaves on surfaces, Ext operator, AGT correspondence

Neguţ, Andrei 1

1 Department of Mathematics, MIT, Cambridge, MA, United States, Simion Stoilow Institute of Mathematics, Bucharest, Romania
@article{GT_2023_27_8_a1,
     author = {Negu\c{t}, Andrei},
     title = {AGT relations for sheaves on surfaces},
     journal = {Geometry & topology},
     pages = {3061--3094},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2023},
     doi = {10.2140/gt.2023.27.3061},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3061/}
}
TY  - JOUR
AU  - Neguţ, Andrei
TI  - AGT relations for sheaves on surfaces
JO  - Geometry & topology
PY  - 2023
SP  - 3061
EP  - 3094
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3061/
DO  - 10.2140/gt.2023.27.3061
ID  - GT_2023_27_8_a1
ER  - 
%0 Journal Article
%A Neguţ, Andrei
%T AGT relations for sheaves on surfaces
%J Geometry & topology
%D 2023
%P 3061-3094
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3061/
%R 10.2140/gt.2023.27.3061
%F GT_2023_27_8_a1
Neguţ, Andrei. AGT relations for sheaves on surfaces. Geometry & topology, Tome 27 (2023) no. 8, pp. 3061-3094. doi : 10.2140/gt.2023.27.3061. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3061/

[1] H Awata, H Kubo, S Odake, J Shiraishi, Quantum WN algebras and Macdonald polynomials, Comm. Math. Phys. 179 (1996) 401

[2] V Baranovsky, Moduli of sheaves on surfaces and action of the oscillator algebra, J. Differential Geom. 55 (2000) 193

[3] J E Bourgine, M Fukuda, Y Matsuo, H Zhang, R D Zhu, Coherent states in quantum W1+∞ algebra and qq-character for 5d super Yang–Mills, Prog. Theor. Exp. Phys. (2016) 41 | DOI

[4] A Braverman, M Finkelberg, H Nakajima, Instanton moduli spaces and W–algebras, 385, Soc. Math. France (2016) | DOI

[5] U Bruzzo, M Pedrini, F Sala, R J Szabo, Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces, Adv. Math. 288 (2016) 1175 | DOI

[6] E Carlsson, N Nekrasov, A Okounkov, Five-dimensional gauge theories and vertex operators, Mosc. Math. J. 14 (2014) 39, 170 | DOI

[7] E Carlsson, A Okounkov, Exts and vertex operators, Duke Math. J. 161 (2012) 1797 | DOI

[8] B Feigin, E Frenkel, Quantum W–algebras and elliptic algebras, Comm. Math. Phys. 178 (1996) 653

[9] B Feigin, S Gukov, VOA[M4], J. Math. Phys. 61 (2020) 012302, 27 | DOI

[10] L Göttsche, M Kool, Virtual refinements of the Vafa–Witten formula, Comm. Math. Phys. 376 (2020) 1 | DOI

[11] I Grojnowski, Instantons and affine algebras, I : The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275 | DOI

[12] D Maulik, A Okounkov, Quantum groups and quantum cohomology, 408, Soc. Math. France (2019) | DOI

[13] H Nakajima, Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. 145 (1997) 379 | DOI

[14] A Neguţ, The q–AGT-W relations via shuffle algebras, Comm. Math. Phys. 358 (2018) 101 | DOI

[15] A Neguţ, Shuffle algebras associated to surfaces, Selecta Math. 25 (2019) 36 | DOI

[16] A Neguţ, Hecke correspondences for smooth moduli spaces of sheaves, Publ. Math. Inst. Hautes Études Sci. 135 (2022) 337 | DOI

[17] A Neguţ, W–algebras associated to surfaces, Proc. Lond. Math. Soc. 124 (2022) 601 | DOI

[18] O Schiffmann, E Vasserot, Cherednik algebras, W–algebras and the equivariant cohomology of the moduli space of instantons on A2, Publ. Math. Inst. Hautes Études Sci. 118 (2013) 213 | DOI

Cité par Sources :