Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We consider a natural generalization of the Carlsson–Okounkov Ext operator on the –theory groups of the moduli spaces of stable sheaves on a smooth projective surface. We compute the commutation relations between the Ext operator and the action of the deformed –algebra on –theory, which was developed by the author in previous work. The conclusion is that the Ext operator is closely related to a vertex operator, thus giving a mathematical incarnation of the Alday–Gaiotto–Tachikawa correspondence for a general algebraic surface.
Neguţ, Andrei 1
@article{GT_2023_27_8_a1, author = {Negu\c{t}, Andrei}, title = {AGT relations for sheaves on surfaces}, journal = {Geometry & topology}, pages = {3061--3094}, publisher = {mathdoc}, volume = {27}, number = {8}, year = {2023}, doi = {10.2140/gt.2023.27.3061}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3061/} }
Neguţ, Andrei. AGT relations for sheaves on surfaces. Geometry & topology, Tome 27 (2023) no. 8, pp. 3061-3094. doi : 10.2140/gt.2023.27.3061. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.3061/
[1] Quantum WN algebras and Macdonald polynomials, Comm. Math. Phys. 179 (1996) 401
, , , ,[2] Moduli of sheaves on surfaces and action of the oscillator algebra, J. Differential Geom. 55 (2000) 193
,[3] Coherent states in quantum W1+∞ algebra and qq-character for 5d super Yang–Mills, Prog. Theor. Exp. Phys. (2016) 41 | DOI
, , , , ,[4] Instanton moduli spaces and W–algebras, 385, Soc. Math. France (2016) | DOI
, , ,[5] Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces, Adv. Math. 288 (2016) 1175 | DOI
, , , ,[6] Five-dimensional gauge theories and vertex operators, Mosc. Math. J. 14 (2014) 39, 170 | DOI
, , ,[7] Exts and vertex operators, Duke Math. J. 161 (2012) 1797 | DOI
, ,[8] Quantum W–algebras and elliptic algebras, Comm. Math. Phys. 178 (1996) 653
, ,[9] VOA[M4], J. Math. Phys. 61 (2020) 012302, 27 | DOI
, ,[10] Virtual refinements of the Vafa–Witten formula, Comm. Math. Phys. 376 (2020) 1 | DOI
, ,[11] Instantons and affine algebras, I : The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275 | DOI
,[12] Quantum groups and quantum cohomology, 408, Soc. Math. France (2019) | DOI
, ,[13] Heisenberg algebra and Hilbert schemes of points on projective surfaces, Ann. of Math. 145 (1997) 379 | DOI
,[14] The q–AGT-W relations via shuffle algebras, Comm. Math. Phys. 358 (2018) 101 | DOI
,[15] Shuffle algebras associated to surfaces, Selecta Math. 25 (2019) 36 | DOI
,[16] Hecke correspondences for smooth moduli spaces of sheaves, Publ. Math. Inst. Hautes Études Sci. 135 (2022) 337 | DOI
,[17] W–algebras associated to surfaces, Proc. Lond. Math. Soc. 124 (2022) 601 | DOI
,[18] Cherednik algebras, W–algebras and the equivariant cohomology of the moduli space of instantons on A2, Publ. Math. Inst. Hautes Études Sci. 118 (2013) 213 | DOI
, ,Cité par Sources :