Formal groups and quantum cohomology
Geometry & topology, Tome 27 (2023) no. 8, pp. 2937-3060.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use chain-level genus-zero Gromov–Witten theory to associate to any closed monotone symplectic manifold a formal group (loosely interpreted), whose Lie algebra is the odd-degree cohomology of the manifold (with vanishing bracket). When taken with coefficients in 𝔽p for some prime p, the p th power map of the formal group is related to quantum Steenrod operations. The motivation for this construction comes from derived Picard groups of Fukaya categories, and from arithmetic aspects of mirror symmetry.

DOI : 10.2140/gt.2023.27.2937
Classification : 53D37, 53D45, 14L05
Keywords: Steenrod operations, quantum cohomology

Seidel, Paul 1

1 Department of Mathematics, Massachusetts Insitutute of Technology, Cambridge, MA, United States
@article{GT_2023_27_8_a0,
     author = {Seidel, Paul},
     title = {Formal groups and quantum cohomology},
     journal = {Geometry & topology},
     pages = {2937--3060},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2023},
     doi = {10.2140/gt.2023.27.2937},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2937/}
}
TY  - JOUR
AU  - Seidel, Paul
TI  - Formal groups and quantum cohomology
JO  - Geometry & topology
PY  - 2023
SP  - 2937
EP  - 3060
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2937/
DO  - 10.2140/gt.2023.27.2937
ID  - GT_2023_27_8_a0
ER  - 
%0 Journal Article
%A Seidel, Paul
%T Formal groups and quantum cohomology
%J Geometry & topology
%D 2023
%P 2937-3060
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2937/
%R 10.2140/gt.2023.27.2937
%F GT_2023_27_8_a0
Seidel, Paul. Formal groups and quantum cohomology. Geometry & topology, Tome 27 (2023) no. 8, pp. 2937-3060. doi : 10.2140/gt.2023.27.2937. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2937/

[1] C Allday, V Puppe, Cohomological methods in transformation groups, 32, Cambridge Univ. Press (1993) | DOI

[2] G Alston, L Amorim, Floer cohomology of torus fibers and real Lagrangians in Fano toric manifolds, Int. Math. Res. Not. 2012 (2012) 2751 | DOI

[3] S Axelrod, I M Singer, Chern–Simons perturbation theory, II, J. Differential Geom. 39 (1994) 173

[4] Y Bespalov, V Lyubashenko, O Manzyuk, Pretriangulated A∞–categories, 76, NAS Ukraine, Institute of Math. (2008) 599

[5] N Bottman, 2–associahedra, Algebr. Geom. Topol. 19 (2019) 743 | DOI

[6] N Bottman, Moduli spaces of witch curves topologically realize the 2–associahedra, J. Symplectic Geom. 17 (2019) 1649 | DOI

[7] N Bottman, S Carmeli, (A∞,2)–categories and relative 2–operads, High. Struct. 5 (2021) 401 | DOI

[8] N Bottman, A Oblomkov, A compactification of the moduli space of marked vertical lines in C2, preprint (2019)

[9] N Bottman, K Wehrheim, Gromov compactness for squiggly strip shrinking in pseudoholomorphic quilts, Selecta Math. 24 (2018) 3381 | DOI

[10] K S Brown, Cohomology of groups, 87, Springer (1982) | DOI

[11] T Coates, A Corti, S Galkin, V Golyshev, A Kasprzyk, Fano varieties and extremal Laurent polynomials, electronic reference (2012)

[12] T Coates, A Corti, S Galkin, V Golyshev, A Kasprzyk, Mirror symmetry and Fano manifolds, from: "European Congress of Mathematics" (editors R Latała, A Ruciński, P Strzelecki, J Świątkowski, D Wrzosek, P Zakrzewski), Eur. Math. Soc. (2013) 285

[13] T Coates, A Corti, S Galkin, A Kasprzyk, Quantum periods for 3–dimensional Fano manifolds, Geom. Topol. 20 (2016) 103 | DOI

[14] F R Cohen, The homology of Cn+1–spaces, n ≥ 0, from: "The homology of iterated loop spaces" (editors F R Cohen, T J Lada, J P May), Lecture Notes in Math. 533, Springer (1976) 207 | DOI

[15] S K Donaldson, Gluing techniques in the cohomology of moduli spaces, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 137

[16] S K Donaldson, Floer homology and algebraic geometry, from: "Vector bundles in algebraic geometry" (editors N J Hitchin, P E Newstead, W M Oxbury), London Math. Soc. Lecture Note Ser. 208, Cambridge Univ. Press (1995) 119 | DOI

[17] G C Drummond-Cole, Homotopically trivializing the circle in the framed little disks, J. Topol. 7 (2014) 641 | DOI

[18] J D Evans, Y Lekili, Floer cohomology of the Chiang Lagrangian, Selecta Math. 21 (2015) 1361 | DOI

[19] J Fine, D Panov, Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle, Geom. Topol. 14 (2010) 1723 | DOI

[20] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251 | DOI

[21] K Fukaya, Morse homotopy and its quantization, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 409 | DOI

[22] K Fukaya, Unobstructed immersed Lagrangian correspondence and filtered A∞ functor, preprint (2017)

[23] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, I, 46.1, Amer. Math. Soc. (2009) | DOI

[24] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, II, 46.2, Amer. Math. Soc. (2009) | DOI

[25] W Fulton, R Macpherson, A compactification of configuration spaces, Ann. of Math. 139 (1994) 183 | DOI

[26] S Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, preprint (2013)

[27] M Gerstenhaber, A A Voronov, Homotopy G–algebras and moduli space operad, Int. Math. Res. Notices (1995) 141 | DOI

[28] E Getzler, Batalin–Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994) 265 | DOI

[29] E Getzler, J D S Jones, Operads, homotopy algebra and iterated integrals for double loop spaces, preprint (1994)

[30] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487 | DOI

[31] J Harris, I Morrison, Moduli of curves, 187, Springer (1998) | DOI

[32] M Hazewinkel, Three lectures on formal groups, from: "Lie algebras and related topics" (editors D J Britten, F W Lemire, R V Moody), CMS Conf. Proc. 5, Amer. Math. Soc. (1986) 51

[33] H Hofer, D A Salamon, Floer homology and Novikov rings, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 483 | DOI

[34] T Honda, Formal groups and zeta-functions, Osaka Math. J. 5 (1968) 199

[35] K Hori, S Katz, A Klemm, R Pandharipande, R Thomas, C Vafa, R Vakil, E Zaslow, Mirror symmetry, 1, Amer. Math. Soc. (2003)

[36] D Joyce, A generalization of manifolds with corners, Adv. Math. 299 (2016) 760 | DOI

[37] T Kimura, J Stasheff, A A Voronov, On operad structures of moduli spaces and string theory, Comm. Math. Phys. 171 (1995) 1 | DOI

[38] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525 | DOI

[39] M Lazard, Commutative formal groups, 443, Springer (1975) | DOI

[40] Y Lekili, M Lipyanskiy, Geometric composition in quilted Floer theory, Adv. Math. 236 (2013) 1 | DOI

[41] Y Lekili, T Perutz, Arithmetic mirror symmetry for the 2–torus, preprint (2012)

[42] Y Lekili, A Polishchuk, Arithmetic mirror symmetry for genus 1 curves with n marked points, Selecta Math. 23 (2017) 1851 | DOI

[43] T L Collaboration, The L–functions and modular forms database, electronic reference (2019)

[44] V Lyubashenko, Category of A∞–categories, Homology Homotopy Appl. 5 (2003) 1

[45] V Lyubashenko, O Manzyuk, Unital A∞–categories, preprint (2008)

[46] S Maclane, Homology, 114, Springer (1967) | DOI

[47] S Ma’U, Quilted strips, graph associahedra, and A∞ n–modules, Algebr. Geom. Topol. 15 (2015) 783 | DOI

[48] S Ma’U, K Wehrheim, C Woodward, A∞ functors for Lagrangian correspondences, Selecta Math. 24 (2018) 1913 | DOI

[49] S Ma’U, C Woodward, Geometric realizations of the multiplihedra, Compos. Math. 146 (2010) 1002 | DOI

[50] J P May, A general algebraic approach to Steenrod operations, from: "The Steenrod algebra and its applications" (editor F P Peterson), Lecture Notes in Math. 168, Springer (1970) 153 | DOI

[51] J P May, The geometry of iterated loop spaces, 271, Springer (1972) | DOI

[52] J H Mcclellan, T W Parks, Eigenvalue and eigenvector decomposition of the discrete Fourier transform, IEEE Trans. Audio Electroacoust. AU-20 (1972) 66 | DOI

[53] J E Mcclure, J H Smith, A solution of Deligne’s Hochschild cohomology conjecture, from: "Recent progress in homotopy theory" (editors D M Davis, J Morava, G Nishida, W S Wilson, N Yagita), Contemp. Math. 293, Amer. Math. Soc. (2002) 153 | DOI

[54] D Mcduff, D Salamon, J–holomorphic curves and quantum cohomology, 6, Amer. Math. Soc. (1994) | DOI

[55] J J Millson, On the first Betti number of a constant negatively curved manifold, Ann. of Math. 104 (1976) 235 | DOI

[56] L D Olson, Hasse invariants and anomalous primes for elliptic curves with complex multiplication, J. Number Theory 8 (1976) 397 | DOI

[57] R Pandharipande, Rational curves on hypersurfaces (after A. Givental), from: "Séminaire Bourbaki, Vol. 1997/98", Astérisque 252, Soc. Math. France (1998) 307

[58] S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171

[59] M Reid, The complete intersection of two or more quadrics, DPhil thesis, University of Cambridge (1972)

[60] A G Reznikov, Symplectic twistor spaces, Ann. Global Anal. Geom. 11 (1993) 109 | DOI

[61] Y Ruan, G Tian, Bott-type symplectic Floer cohomology and its multiplication structures, Math. Res. Lett. 2 (1995) 203 | DOI

[62] P Salvatore, Configuration spaces with summable labels, from: "Cohomological methods in homotopy theory" (editors J Aguadé, C Broto, C Casacuberta), Progr. Math. 196, Birkhäuser (2001) 375 | DOI

[63] M Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968) 208 | DOI

[64] P Seidel, A∞–subalgebras and natural transformations, Homology Homotopy Appl. 10 (2008) 83 | DOI

[65] P Seidel, Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI

[66] P Seidel, N Wilkins, Covariant constancy of quantum Steenrod operations, J. Fixed Point Theory Appl. 24 (2022) 52 | DOI

[67] N Sheridan, On the Fukaya category of a Fano hypersurface in projective space, Publ. Math. Inst. Hautes Études Sci. 124 (2016) 165 | DOI

[68] D P Sinha, The (non-equivariant) homology of the little disks operad, from: "Operads 2009" (editors J L Loday, B Vallette), Sémin. Congr. 26, Soc. Math. France (2013) 253

[69] I Smith, Floer cohomology and pencils of quadrics, Invent. Math. 189 (2012) 149 | DOI

[70] N E Steenrod, Cohomology operations, 50, Princeton Univ. Press (1962) | DOI

[71] V Tourtchine, Dyer–Lashof–Cohen operations in Hochschild cohomology, Algebr. Geom. Topol. 6 (2006) 875 | DOI

[72] A A Voronov, M Gerstenkhaber, Higher-order operations on the Hochschild complex, Funktsional. Anal. i Prilozhen. 29 (1995) 1

[73] C A Weibel, An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI

[74] N Wilkins, A construction of the quantum Steenrod squares and their algebraic relations, Geom. Topol. 24 (2020) 885 | DOI

[75] N Wilkins, Quantum Steenrod squares and the equivariant pair-of-pants in symplectic cohomology, J. Topol. Anal. 15 (2023) 1 | DOI

[76] J Young, Brace bar–cobar duality, preprint (2013)

[77] A Zimmermann, Fine Hochschild invariants of derived categories for symmetric algebras, J. Algebra 308 (2007) 350 | DOI

Cité par Sources :