A higher-rank rigidity theorem for convex real projective manifolds
Geometry & topology, Tome 27 (2023) no. 7, pp. 2899-2936.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For convex real projective manifolds we prove an analogue of the higher-rank rigidity theorem of Ballmann and Burns and Spatzier.

DOI : 10.2140/gt.2023.27.2899
Keywords: real projective structures, rank rigidity, symmetric spaces

Zimmer, Andrew 1

1 Department of Mathematics, Louisiana State University, Baton Rouge, LA, United States, Department of Mathematics, University of Wisconsin, Madison, Madison, WI, United States
@article{GT_2023_27_7_a5,
     author = {Zimmer, Andrew},
     title = {A higher-rank rigidity theorem for convex real projective manifolds},
     journal = {Geometry & topology},
     pages = {2899--2936},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2023},
     doi = {10.2140/gt.2023.27.2899},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2899/}
}
TY  - JOUR
AU  - Zimmer, Andrew
TI  - A higher-rank rigidity theorem for convex real projective manifolds
JO  - Geometry & topology
PY  - 2023
SP  - 2899
EP  - 2936
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2899/
DO  - 10.2140/gt.2023.27.2899
ID  - GT_2023_27_7_a5
ER  - 
%0 Journal Article
%A Zimmer, Andrew
%T A higher-rank rigidity theorem for convex real projective manifolds
%J Geometry & topology
%D 2023
%P 2899-2936
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2899/
%R 10.2140/gt.2023.27.2899
%F GT_2023_27_7_a5
Zimmer, Andrew. A higher-rank rigidity theorem for convex real projective manifolds. Geometry & topology, Tome 27 (2023) no. 7, pp. 2899-2936. doi : 10.2140/gt.2023.27.2899. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2899/

[1] W Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann. 259 (1982) 131 | DOI

[2] W Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. 122 (1985) 597 | DOI

[3] W Ballmann, Lectures on spaces of nonpositive curvature, 25, Birkhäuser (1995) | DOI

[4] W Ballmann, P Eberlein, Fundamental groups of manifolds of nonpositive curvature, J. Differential Geom. 25 (1987) 1

[5] Y Benoist, Convexes divisibles, II, Duke Math. J. 120 (2003) 97 | DOI

[6] Y Benoist, Convexes divisibles, IV : Structure du bord en dimension 3, Invent. Math. 164 (2006) 249 | DOI

[7] Y Benoist, A survey on divisible convex sets, from: "Geometry, analysis and topology of discrete groups" (editors L Ji, K Liu, L Yang, S T Yau), Adv. Lect. Math. 6, International (2008) 1

[8] Y Benoist, J F Quint, Random walks on reductive groups, 62, Springer (2016) | DOI

[9] J P Benzécri, Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229

[10] A Borel, Compact Clifford–Klein forms of symmetric spaces, Topology 2 (1963) 111 | DOI

[11] K Burns, R Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Études Sci. Publ. Math. 65 (1987) 35 | DOI

[12] K Burns, R Spatzier, On topological Tits buildings and their classification, Inst. Hautes Études Sci. Publ. Math. 65 (1987) 5 | DOI

[13] H Busemann, P J Kelly, Projective geometry and projective metrics, Academic (1953)

[14] D Cooper, D D Long, S Tillmann, On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181 | DOI

[15] J Faraut, A Korányi, Analysis on symmetric cones, Clarendon (1994)

[16] W M Goldman, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791

[17] P De La Harpe, On Hilbert’s metric for simplices, from: "Geometric group theory, I" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 97 | DOI

[18] M Islam, Rank-one Hilbert geometries, preprint (2019)

[19] M Islam, A Zimmer, A flat torus theorem for convex co-compact actions of projective linear groups, J. Lond. Math. Soc. 103 (2021) 470 | DOI

[20] G Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. of Math. 148 (1998) 291 | DOI

[21] M Koecher, The Minnesota notes on Jordan algebras and their applications, 1710, Springer (1999) | DOI

[22] L Marquis, Around groups in Hilbert geometry, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 207 | DOI

[23] R D Nussbaum, Hilbert’s projective metric and iterated nonlinear maps, 391, Amer. Math. Soc. (1988) | DOI

[24] G Prasad, M S Raghunathan, Cartan subgroups and lattices in semi-simple groups, Ann. of Math. 96 (1972) 296 | DOI

[25] J F Quint, Convexes divisibles (d’après Yves Benoist), from: "Séminaire Bourbaki 2008/2009", Astérisque 332, Soc. Math. France (2010) 45

[26] C Vernicos, On the Hilbert geometry of convex polytopes, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 111 | DOI

[27] J Vey, Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1970) 641

[28] È B Vinberg, The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963) 303

[29] È B Vinberg, Structure of the group of automorphisms of a homogeneous convex cone, Trudy Moskov. Mat. Obšč. 13 (1965) 56

Cité par Sources :