Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For convex real projective manifolds we prove an analogue of the higher-rank rigidity theorem of Ballmann and Burns and Spatzier.
Zimmer, Andrew 1
@article{GT_2023_27_7_a5, author = {Zimmer, Andrew}, title = {A higher-rank rigidity theorem for convex real projective manifolds}, journal = {Geometry & topology}, pages = {2899--2936}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2023}, doi = {10.2140/gt.2023.27.2899}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2899/} }
TY - JOUR AU - Zimmer, Andrew TI - A higher-rank rigidity theorem for convex real projective manifolds JO - Geometry & topology PY - 2023 SP - 2899 EP - 2936 VL - 27 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2899/ DO - 10.2140/gt.2023.27.2899 ID - GT_2023_27_7_a5 ER -
Zimmer, Andrew. A higher-rank rigidity theorem for convex real projective manifolds. Geometry & topology, Tome 27 (2023) no. 7, pp. 2899-2936. doi : 10.2140/gt.2023.27.2899. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2899/
[1] Axial isometries of manifolds of nonpositive curvature, Math. Ann. 259 (1982) 131 | DOI
,[2] Nonpositively curved manifolds of higher rank, Ann. of Math. 122 (1985) 597 | DOI
,[3] Lectures on spaces of nonpositive curvature, 25, Birkhäuser (1995) | DOI
,[4] Fundamental groups of manifolds of nonpositive curvature, J. Differential Geom. 25 (1987) 1
, ,[5] Convexes divisibles, II, Duke Math. J. 120 (2003) 97 | DOI
,[6] Convexes divisibles, IV : Structure du bord en dimension 3, Invent. Math. 164 (2006) 249 | DOI
,[7] A survey on divisible convex sets, from: "Geometry, analysis and topology of discrete groups" (editors L Ji, K Liu, L Yang, S T Yau), Adv. Lect. Math. 6, International (2008) 1
,[8] Random walks on reductive groups, 62, Springer (2016) | DOI
, ,[9] Sur les variétés localement affines et localement projectives, Bull. Soc. Math. France 88 (1960) 229
,[10] Compact Clifford–Klein forms of symmetric spaces, Topology 2 (1963) 111 | DOI
,[11] Manifolds of nonpositive curvature and their buildings, Inst. Hautes Études Sci. Publ. Math. 65 (1987) 35 | DOI
, ,[12] On topological Tits buildings and their classification, Inst. Hautes Études Sci. Publ. Math. 65 (1987) 5 | DOI
, ,[13] Projective geometry and projective metrics, Academic (1953)
, ,[14] On convex projective manifolds and cusps, Adv. Math. 277 (2015) 181 | DOI
, , ,[15] Analysis on symmetric cones, Clarendon (1994)
, ,[16] Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990) 791
,[17] On Hilbert’s metric for simplices, from: "Geometric group theory, I" (editors G A Niblo, M A Roller), London Math. Soc. Lecture Note Ser. 181, Cambridge Univ. Press (1993) 97 | DOI
,[18] Rank-one Hilbert geometries, preprint (2019)
,[19] A flat torus theorem for convex co-compact actions of projective linear groups, J. Lond. Math. Soc. 103 (2021) 470 | DOI
, ,[20] The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. of Math. 148 (1998) 291 | DOI
,[21] The Minnesota notes on Jordan algebras and their applications, 1710, Springer (1999) | DOI
,[22] Around groups in Hilbert geometry, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 207 | DOI
,[23] Hilbert’s projective metric and iterated nonlinear maps, 391, Amer. Math. Soc. (1988) | DOI
,[24] Cartan subgroups and lattices in semi-simple groups, Ann. of Math. 96 (1972) 296 | DOI
, ,[25] Convexes divisibles (d’après Yves Benoist), from: "Séminaire Bourbaki 2008/2009", Astérisque 332, Soc. Math. France (2010) 45
,[26] On the Hilbert geometry of convex polytopes, from: "Handbook of Hilbert geometry" (editors A Papadopoulos, M Troyanov), IRMA Lect. Math. Theor. Phys. 22, Eur. Math. Soc. (2014) 111 | DOI
,[27] Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 (1970) 641
,[28] The theory of homogeneous convex cones, Trudy Moskov. Mat. Obšč. 12 (1963) 303
,[29] Structure of the group of automorphisms of a homogeneous convex cone, Trudy Moskov. Mat. Obšč. 13 (1965) 56
,Cité par Sources :