Hamiltonian no-torsion
Geometry & topology, Tome 27 (2023) no. 7, pp. 2833-2897.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In 2002, Polterovich established that on closed aspherical symplectic manifolds, Hamiltonian diffeomorphisms of finite order, also called Hamiltonian torsion, must be trivial. We prove the first higher-dimensional Hamiltonian no-torsion theorems beyond that of Polterovich, by considering the dynamical aspects of the problem. Our results are threefold.

First, we show that closed symplectic Calabi–Yau and negative monotone symplectic manifolds admit no Hamiltonian torsion. A key role is played by a new notion of a Hamiltonian diffeomorphism with nonisolated fixed points.

Second, going beyond topological constraints by means of Smith theory in filtered Floer homology, barcodes and quantum Steenrod powers, we prove that every closed positive monotone symplectic manifold admitting Hamiltonian torsion is geometrically uniruled by pseudoholomorphic spheres. In fact, we produce nontrivial homological counts of such curves, answering a close variant of Problem 24 from the introductory monograph of McDuff and Salamon. This provides additional no-torsion results and obstructions to Hamiltonian actions of compact Lie groups, related to a celebrated result of McDuff from 2009, and lattices such as SL(k, ) for k 2. We also prove that there is no Hamiltonian torsion diffeomorphism with noncontractible orbits.

Third, by defining a new invariant of a Hamiltonian diffeomorphism, we prove a first nontrivial symplectic analogue of Newman’s 1931 theorem on finite groups of transformations. Namely, for each monotone symplectic manifold there exists a neighborhood of the identity in the Hamiltonian group endowed with Hofer’s metric or Viterbo’s spectral metric that contains no finite subgroups.

DOI : 10.2140/gt.2023.27.2833
Keywords: Hamiltonian diffeomorphisms, finite group actions, Floer homology, barcodes, Smith theory, spectral invariants, quantum Steenrod powers

Atallah, Marcelo S 1 ; Shelukhin, Egor 1

1 Department of Mathematics and Statistics, University of Montreal, Centre-Ville Montreal, QC, Canada
@article{GT_2023_27_7_a4,
     author = {Atallah, Marcelo S and Shelukhin, Egor},
     title = {Hamiltonian no-torsion},
     journal = {Geometry & topology},
     pages = {2833--2897},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2023},
     doi = {10.2140/gt.2023.27.2833},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2833/}
}
TY  - JOUR
AU  - Atallah, Marcelo S
AU  - Shelukhin, Egor
TI  - Hamiltonian no-torsion
JO  - Geometry & topology
PY  - 2023
SP  - 2833
EP  - 2897
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2833/
DO  - 10.2140/gt.2023.27.2833
ID  - GT_2023_27_7_a4
ER  - 
%0 Journal Article
%A Atallah, Marcelo S
%A Shelukhin, Egor
%T Hamiltonian no-torsion
%J Geometry & topology
%D 2023
%P 2833-2897
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2833/
%R 10.2140/gt.2023.27.2833
%F GT_2023_27_7_a4
Atallah, Marcelo S; Shelukhin, Egor. Hamiltonian no-torsion. Geometry & topology, Tome 27 (2023) no. 7, pp. 2833-2897. doi : 10.2140/gt.2023.27.2833. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2833/

[1] M Abouzaid, Symplectic cohomology and Viterbo’s theorem, from: "Free loop spaces in geometry and topology" (editors J Latschev, A Oancea), IRMA Lect. Math. Theor. Phys. 24, Eur. Math. Soc. (2015) 271

[2] M Audin, Torus actions on symplectic manifolds, 93, Birkhäuser (2004) | DOI

[3] P Biran, L Polterovich, D Salamon, Propagation in Hamiltonian dynamics and relative symplectic homology, Duke Math. J. 119 (2003) 65 | DOI

[4] A Borel, Seminar on transformation groups, 46, Princeton Univ. Press (1960)

[5] G E Bredon, Introduction to compact transformation groups, 46, Academic (1972)

[6] L Buhovsky, V Humilière, S Seyfaddini, The action spectrum and C0 symplectic topology, Math. Ann. 380 (2021) 293 | DOI

[7] E Çineli, V L Ginzburg, B Z Gürel, From pseudo-rotations to holomorphic curves via quantum Steenrod squares, Int. Math. Res. Not. 2022 (2022) 2274 | DOI

[8] F Charest, C Woodward, Floer trajectories and stabilizing divisors, J. Fixed Point Theory Appl. 19 (2017) 1165 | DOI

[9] W Chen, Group actions on 4–manifolds : some recent results and open questions, from: "Proceedings of the Gökova Geometry–Topology Conference 2009" (editors S Akbulut, D Auroux, T Önder), International (2010) 1

[10] W Chen, S Kwasik, Symplectic symmetries of 4–manifolds, Topology 46 (2007) 103 | DOI

[11] R Chiang, L Kessler, Cyclic actions on rational ruled symplectic four-manifolds, Transform. Groups 24 (2019) 987 | DOI

[12] R Chiang, L Kessler, Homologically trivial symplectic cyclic actions need not extend to Hamiltonian circle actions, J. Topol. Anal. 12 (2020) 1047 | DOI

[13] K Cieliebak, K Mohnke, Symplectic hypersurfaces and transversality in Gromov–Witten theory, J. Symplectic Geom. 5 (2007) 281 | DOI

[14] M De Gosson, S De Gosson, P Piccione, On a product formula for the Conley–Zehnder index of symplectic paths and its applications, Ann. Global Anal. Geom. 34 (2008) 167 | DOI

[15] T Delzant, Sous-algèbres de dimension finie de l’algèbre des champs hamiltoniens, preprint (1995)

[16] A Dress, Newman’s theorems on transformation groups, Topology 8 (1969) 203 | DOI

[17] M Entov, L Polterovich, Calabi quasimorphism and quantum homology, Int. Math. Res. Not. 2003 (2003) 1635 | DOI

[18] M Entov, L Polterovich, Rigid subsets of symplectic manifolds, Compos. Math. 145 (2009) 773 | DOI

[19] J W Fish, Target-local Gromov compactness, Geom. Topol. 15 (2011) 765 | DOI

[20] J W Fish, H Hofer, Lectures on polyfolds and symplectic field theory, preprint (2018)

[21] A Floer, Proof of the Arnol’d conjecture for surfaces and generalizations to certain Kähler manifolds, Duke Math. J. 53 (1986) 1 | DOI

[22] A Floer, Morse theory for fixed points of symplectic diffeomorphisms, Bull. Amer. Math. Soc. 16 (1987) 279 | DOI

[23] A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575 | DOI

[24] A Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989) 207

[25] E E Floyd, On periodic maps and the Euler characteristics of associated spaces, Trans. Amer. Math. Soc. 72 (1952) 138 | DOI

[26] U Frauenfelder, The Arnold–Givental conjecture and moment Floer homology, Int. Math. Res. Not. 2004 (2004) 2179 | DOI

[27] K Fukaya, Morse homotopy and its quantization, from: "Geometric topology" (editor W H Kazez), AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 409 | DOI

[28] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory : anomaly and obstruction, II, 46, Amer. Math. Soc. (2009) | DOI

[29] K Fukaya, Y G Oh, H Ohta, K Ono, Technical details on Kuranishi structure and virtual fundamental chain, preprint (2012)

[30] K Fukaya, Y G Oh, H Ohta, K Ono, Exponential decay estimates and smoothness of the moduli space of pseudoholomorphic curves, preprint (2016)

[31] K Fukaya, Y G Oh, H Ohta, K Ono, Construction of Kuranishi structures on the moduli spaces of pseudo holomorphic disks, I, from: "Surveys in differential geometry 2017 : celebrating the 50th anniversary of the Journal of Differential Geometry" (editors H D Cao, J Li, R M Schoen, S T Yau), Surv. Differ. Geom. 22, International (2018) 133 | DOI

[32] K Fukaya, Y G Oh, H Ohta, K Ono, Kuranishi structures and virtual fundamental chains, Springer (2020) | DOI

[33] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 | DOI

[34] V L Ginzburg, B Z Gürel, Conley conjecture for negative monotone symplectic manifolds, Int. Math. Res. Not. 2012 (2012) 1748 | DOI

[35] V L Ginzburg, B Z Gürel, Hamiltonian pseudo-rotations of projective spaces, Invent. Math. 214 (2018) 1081 | DOI

[36] V L Ginzburg, B Z Gürel, Conley conjecture revisited, Int. Math. Res. Not. 2019 (2019) 761 | DOI

[37] J González-Meneses, Basic results on braid groups, Ann. Math. Blaise Pascal 18 (2011) 15 | DOI

[38] M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI

[39] D Hein, The Conley conjecture for irrational symplectic manifolds, J. Symplectic Geom. 10 (2012) 183 | DOI

[40] H Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 25 | DOI

[41] H Hofer, D A Salamon, Floer homology and Novikov rings, from: "The Floer memorial volume" (editors H Hofer, C H Taubes, A Weinstein, E Zehnder), Progr. Math. 133, Birkhäuser (1995) 483 | DOI

[42] H Hofer, K Wysocki, E Zehnder, sc-smoothness, retractions and new models for smooth spaces, Discrete Contin. Dyn. Syst. 28 (2010) 665 | DOI

[43] H Hofer, K Wysocki, E Zehnder, Applications of polyfold theory, I : The polyfolds of Gromov–Witten theory, 1179, Amer. Math. Soc. (2017) | DOI

[44] H Hofer, K Wysocki, E Zehnder, Polyfold and Fredholm theory, 72, Springer (2021) | DOI

[45] W Y Hsiang, Cohomology theory of topological transformation groups, 85, Springer (1975) | DOI

[46] Y Karshon, J S Pearl, Shortening the Hofer length of Hamiltonian circle actions, J. Symplectic Geom. 13 (2015) 209 | DOI

[47] Y Kawamoto, On C0–continuity of the spectral norm for symplectically non-aspherical manifolds, Int. Math. Res. Not. 2022 (2022) 17187 | DOI

[48] A Kislev, E Shelukhin, Bounds on spectral norms and barcodes, Geom. Topol. 25 (2021) 3257 | DOI

[49] J Kędra, Remarks on the flux groups, Math. Res. Lett. 7 (2000) 279 | DOI

[50] J Kędra, D Kotschick, S Morita, Crossed flux homomorphisms and vanishing theorems for flux groups, Geom. Funct. Anal. 16 (2006) 1246 | DOI

[51] F Lalonde, D Mcduff, The geometry of symplectic energy, Ann. of Math. 141 (1995) 349 | DOI

[52] R Leclercq, F Zapolsky, Spectral invariants for monotone Lagrangians, J. Topol. Anal. 10 (2018) 627 | DOI

[53] J Li, T J Li, W Wu, Braid groups and symplectic mapping class groups of rational surfaces, in preparation

[54] G Liu, Associativity of quantum multiplication, Comm. Math. Phys. 191 (1998) 265 | DOI

[55] G Liu, G Tian, Floer homology and Arnold conjecture, J. Differential Geom. 49 (1998) 1

[56] D Mcduff, Symplectic diffeomorphisms and the flux homomorphism, Invent. Math. 77 (1984) 353 | DOI

[57] D Mcduff, Hamiltonian S1–manifolds are uniruled, Duke Math. J. 146 (2009) 449 | DOI

[58] D Mcduff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012)

[59] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Univ. Press (2017) | DOI

[60] D Mcduff, J Slimowitz, Hofer–Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol. 5 (2001) 799 | DOI

[61] M Mclean, Local Floer homology and infinitely many simple Reeb orbits, Algebr. Geom. Topol. 12 (2012) 1901 | DOI

[62] J W Morgan, The Smith conjecture, from: "The Smith conjecture" (editors J W Morgan, H Bass), Pure Appl. Math. 112, Academic (1984) 3 | DOI

[63] M H A Newman, A theorem on periodic transformations of spaces, Q. J. Math., Oxf. Ser. 2 (1931) 1 | DOI

[64] Y G Oh, Construction of spectral invariants of Hamiltonian paths on closed symplectic manifolds, from: "The breadth of symplectic and Poisson geometry" (editors J E Marsden, T S Ratiu), Progr. Math. 232, Birkhäuser (2005) 525 | DOI

[65] Y G Oh, Spectral invariants, analysis of the Floer moduli space, and geometry of the Hamiltonian diffeomorphism group, Duke Math. J. 130 (2005) 199 | DOI

[66] Y G Oh, Lectures on Floer theory and spectral invariants of Hamiltonian flows, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 321 | DOI

[67] Y G Oh, Symplectic topology and Floer homology, I : Symplectic geometry and pseudoholomorphic curves, 28, Cambridge Univ. Press (2015) | DOI

[68] Y Ostrover, Calabi quasi-morphisms for some non-monotone symplectic manifolds, Algebr. Geom. Topol. 6 (2006) 405 | DOI

[69] J Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudo-holomorphic curves, Geom. Topol. 20 (2016) 779 | DOI

[70] S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171

[71] L Polterovich, The geometry of the group of symplectic diffeomorphisms, Birkhäuser (2001) | DOI

[72] L Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002) 655 | DOI

[73] L Polterovich, D Rosen, Function theory on symplectic manifolds, 34, Amer. Math. Soc. (2014) | DOI

[74] L Polterovich, E Shelukhin, Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules, Selecta Math. 22 (2016) 227 | DOI

[75] L Polterovich, E Shelukhin, V Stojisavljević, Persistence modules with operators in Morse and Floer theory, Mosc. Math. J. 17 (2017) 757 | DOI

[76] M Poźniak, Floer homology, Novikov rings and clean intersections, from: "Northern California symplectic geometry seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 119 | DOI

[77] I Mundet I Riera, Finite subgroups of Ham and Symp, Math. Ann. 370 (2018) 331 | DOI

[78] I Mundet I Riera, Finite group actions on homology spheres and manifolds with nonzero Euler characteristic, J. Topol. 12 (2019) 744 | DOI

[79] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827 | DOI

[80] Y Ruan, Virtual neighborhoods and pseudo-holomorphic curves, Turkish J. Math. 23 (1999) 161

[81] Y Ruan, G Tian, A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994) 269 | DOI

[82] Y Ruan, G Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995) 259

[83] D Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143 | DOI

[84] D Salamon, E Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303 | DOI

[85] F Schmaschke, Abelianization and Floer homology of Lagrangians in clean intersection, PhD thesis, Leipzig University (2016)

[86] M Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419 | DOI

[87] P Seidel, π1 of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046 | DOI

[88] P Seidel, Symplectic Floer homology and the mapping class group, Pacific J. Math. 206 (2002) 219 | DOI

[89] P Seidel, Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI

[90] P Seidel, The equivariant pair-of-pants product in fixed point Floer cohomology, Geom. Funct. Anal. 25 (2015) 942 | DOI

[91] P Seidel, Formal groups and quantum cohomology, preprint (2019)

[92] P Seidel, N Wilkins, Covariant constancy of quantum Steenrod operations, J. Fixed Point Theory Appl. 24 (2022) | DOI

[93] E Shelukhin, Pseudo-rotations and Steenrod squares, J. Mod. Dyn. 16 (2020) 289 | DOI

[94] E Shelukhin, Pseudo-rotations and Steenrod squares revisited, Math. Res. Lett. 28 (2021) 1255 | DOI

[95] E Shelukhin, On the Hofer–Zehnder conjecture, Ann. of Math. 195 (2022) 775 | DOI

[96] E Shelukhin, Viterbo conjecture for Zoll symmetric spaces, Invent. Math. 230 (2022) 321 | DOI

[97] E Shelukhin, N Wilkins, Quantum Steenrod powers and Hamiltonian maps, in preparation

[98] E Shelukhin, J Zhao, The Z∕pZ–equivariant product-isomorphism in fixed point Floer cohomology, J. Symplectic Geom. 19 (2021) 1101 | DOI

[99] P A Smith, Transformations of finite period, Ann. of Math. 39 (1938) 127 | DOI

[100] P A Smith, Transformations of finite period, III : Newman’s theorem, Ann. of Math. 42 (1941) 446 | DOI

[101] M Usher, Spectral numbers in Floer theories, Compos. Math. 144 (2008) 1581 | DOI

[102] M Usher, Duality in filtered Floer–Novikov complexes, J. Topol. Anal. 2 (2010) 233 | DOI

[103] M Usher, J Zhang, Persistent homology and Floer–Novikov theory, Geom. Topol. 20 (2016) 3333 | DOI

[104] C Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992) 685 | DOI

[105] K Wehrheim, C Woodward, Orientations for pseudoholomorphic quilts, preprint (2015)

[106] N Wilkins, A construction of the quantum Steenrod squares and their algebraic relations, Geom. Topol. 24 (2020) 885 | DOI

[107] N Wilkins, Quantum Steenrod squares and the equivariant pair-of-pants in symplectic cohomology, J. Topol. Anal. 15 (2023) 1 | DOI

[108] E Witten, Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry" (editors H B Lawson Jr., S T Yau), Lehigh Univ. (1991) 243 | DOI

[109] Y Wu, X Liu, Symplectic group actions on homotopy elliptic surfaces, Chinese Ann. Math. Ser. B 35 (2014) 873 | DOI

[110] F Zapolsky, The Lagrangian Floer-quantum-PSS package and canonical orientations in Floer theory, preprint (2015)

Cité par Sources :