The 2–primary Hurewicz image of tmf
Geometry & topology, Tome 27 (2023) no. 7, pp. 2763-2831.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We determine the image of the 2–primary tmf Hurewicz homomorphism, where tmf is the spectrum of topological modular forms. We do this by lifting elements of tmf to the homotopy groups of the generalized Moore spectrum M(8,v18) using a modified form of the Adams spectral sequence and the tmf resolution, and then proving the existence of a v232–self-map on M(8,v18) to generate 192–periodic families in the stable homotopy groups of spheres.

DOI : 10.2140/gt.2023.27.2763
Classification : 55Q45, 55Q51, 55T15
Keywords: topological modular forms, tmf, Hurewicz image, $v_2$–periodicity, tmf resolution

Behrens, Mark 1 ; Mahowald, Mark 2 ; Quigley, J D 3

1 Department of Mathematics, University of Notre Dame, Notre Dame, IN, United States
2 Department of Mathematics, Northwestern University, Evanston, IL, United States
3 Department of Mathematics, University of Virginia, Charlottesville, VA, United States
@article{GT_2023_27_7_a3,
     author = {Behrens, Mark and Mahowald, Mark and Quigley, J D},
     title = {The 2{\textendash}primary {Hurewicz} image of tmf},
     journal = {Geometry & topology},
     pages = {2763--2831},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2023},
     doi = {10.2140/gt.2023.27.2763},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2763/}
}
TY  - JOUR
AU  - Behrens, Mark
AU  - Mahowald, Mark
AU  - Quigley, J D
TI  - The 2–primary Hurewicz image of tmf
JO  - Geometry & topology
PY  - 2023
SP  - 2763
EP  - 2831
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2763/
DO  - 10.2140/gt.2023.27.2763
ID  - GT_2023_27_7_a3
ER  - 
%0 Journal Article
%A Behrens, Mark
%A Mahowald, Mark
%A Quigley, J D
%T The 2–primary Hurewicz image of tmf
%J Geometry & topology
%D 2023
%P 2763-2831
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2763/
%R 10.2140/gt.2023.27.2763
%F GT_2023_27_7_a3
Behrens, Mark; Mahowald, Mark; Quigley, J D. The 2–primary Hurewicz image of tmf. Geometry & topology, Tome 27 (2023) no. 7, pp. 2763-2831. doi : 10.2140/gt.2023.27.2763. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2763/

[1] J F Adams, On the groups J(X), IV, Topology 5 (1966) 21 | DOI

[2] M G Barratt, J D S Jones, M E Mahowald, Relations amongst Toda brackets and the Kervaire invariant in dimension 62, J. London Math. Soc. 30 (1984) 533 | DOI

[3] T Bauer, Computation of the homotopy of the spectrum tmf, from: "Groups, homotopy and configuration spaces" (editors N Iwase, T Kohno, R Levi, D Tamaki, J Wu), Geom. Topol. Monogr. 13, Geom. Topol. Publ. (2008) 11 | DOI

[4] A Beaudry, M Behrens, P Bhattacharya, D Culver, Z Xu, On the E2–term of the bo–Adams spectral sequence, J. Topol. 13 (2020) 356 | DOI

[5] M Behrens, The Goodwillie tower and the EHP sequence, 1026, Amer. Math. Soc. (2012) | DOI

[6] M Behrens, M Hill, M J Hopkins, M Mahowald, On the existence of a v232–self map on M(1,4) at the prime 2, Homology Homotopy Appl. 10 (2008) 45 | DOI

[7] M Behrens, M Hill, M J Hopkins, M Mahowald, Detecting exotic spheres in low dimensions using cokerJ, J. Lond. Math. Soc. 101 (2020) 1173 | DOI

[8] M Behrens, K Ormsby, N Stapleton, V Stojanoska, On the ring of cooperations for 2–primary connective topological modular forms, J. Topol. 12 (2019) 577 | DOI

[9] E Belmont, K Shimomura, Beta families arising from a v29 self map on S∕(3,v18), preprint (2021)

[10] P Bhattacharya, I Bobkova, B Thomas, The P21 Margolis homology of connective topological modular forms, Homology Homotopy Appl. 23 (2021) 379 | DOI

[11] R Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959) 313 | DOI

[12] W Browder, The Kervaire invariant of framed manifolds and its generalization, Ann. of Math. 90 (1969) 157 | DOI

[13] R R Bruner, The cohomology of the mod 2 Steenrod algebra : a computer computation, preprint (2019)

[14] R R Bruner, J Rognes, The Adams spectral sequence for topological modular forms, 253, Amer. Math. Soc. (2021) | DOI

[15] D M Davis, M Mahowald, Connective versions of TMF(3), Int. J. Mod. Math. 5 (2010) 223

[16] C L Douglas, J Francis, A G Henriques, M A Hill, editors, Topological modular forms, 201, Amer. Math. Soc. (2014) | DOI

[17] P G Goerss, J D S Jones, M E Mahowald, Some generalized Brown–Gitler spectra, Trans. Amer. Math. Soc. 294 (1986) 113 | DOI

[18] M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 | DOI

[19] M J Hopkins, M Mahowald, From elliptic curves to homotopy theory, from: "Topological modular forms" (editors C L Douglas, J Francis, A G Henriques, M A Hill), Mathematical Surveys and Monographs 201, Amer. Math. Soc. (2014) 261 | DOI

[20] M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1 | DOI

[21] M Hovey, Homotopy theory of comodules over a Hopf algebroid, from: "Homotopy theory : relations with algebraic geometry, group cohomology, and algebraic –theory" (editors P Goerss, S Priddy), Contemp. Math. 346, Amer. Math. Soc. (2004) 261 | DOI

[22] D C Isaksen, Stable stems, 1269, Amer. Math. Soc. (2019) | DOI

[23] D C Isaksen, The Mahowald operator in the cohomology of the Steenrod algebra, preprint (2020)

[24] D C Isaksen, G Wang, Z Xu, Stable homotopy groups of spheres : from dimension 0 to 90, preprint (2020)

[25] D C Isaksen, G Wang, Z Xu, Classical and C–motivic Adams charts, electronic resource (2022)

[26] M A Kervaire, J W Milnor, Groups of homotopy spheres, I, Ann. of Math. 77 (1963) 504 | DOI

[27] G Laures, K(1)–local topological modular forms, Invent. Math. 157 (2004) 371 | DOI

[28] W Lellmann, M Mahowald, The bo–Adams spectral sequence, Trans. Amer. Math. Soc. 300 (1987) 593 | DOI

[29] G Li, X D Shi, G Wang, Z Xu, Hurewicz images of real bordism theory and real Johnson–Wilson theories, Adv. Math. 342 (2019) 67 | DOI

[30] M Mahowald, bo–resolutions, Pacific J. Math. 92 (1981) 365 | DOI

[31] M Mahowald, C Rezk, Topological modular forms of level 3, Pure Appl. Math. Q. 5 (2009) 853 | DOI

[32] M Mahowald, M Tangora, An infinite subalgebra of ExtA (Z2, Z2), Trans. Amer. Math. Soc. 132 (1968) 263 | DOI

[33] H Margolis, S Priddy, M Tangora, Another systematic phenomenon in the cohomology of the Steenrod algebra, Topology 10 (1970) 43 | DOI

[34] A Mathew, The homology of tmf, Homology Homotopy Appl. 18 (2016) 1 | DOI

[35] E E Moise, Affine structures in 3–manifolds, V : The triangulation theorem and Hauptvermutung, Ann. of Math. 56 (1952) 96 | DOI

[36] G Wang, Z Xu, The triviality of the 61–stem in the stable homotopy groups of spheres, Ann. of Math. 186 (2017) 501 | DOI

Cité par Sources :