A new cohomology class on the moduli space of curves
Geometry & topology, Tome 27 (2023) no. 7, pp. 2695-2761.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a collection Θg,n H4g4+2n(¯g,n, ) for 2g 2 + n > 0 of cohomology classes that restrict naturally to boundary divisors. We prove that the intersection numbers ¯ g,nΘg,n i=1nψimi can be recursively calculated. We conjecture that a generating function for these intersection numbers is a tau function of the KdV hierarchy. This is analogous to the conjecture of Witten proven by Kontsevich that a generating function for the intersection numbers ¯ g,n i=1nψimi is a tau function of the KdV hierarchy.

DOI : 10.2140/gt.2023.27.2695
Keywords: moduli space, cohomology, spin structure

Norbury, Paul 1

1 School of Mathematics and Statistics, University of Melbourne, Melbourne VIC, Australia
@article{GT_2023_27_7_a2,
     author = {Norbury, Paul},
     title = {A new cohomology class on the moduli space of curves},
     journal = {Geometry & topology},
     pages = {2695--2761},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2023},
     doi = {10.2140/gt.2023.27.2695},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2695/}
}
TY  - JOUR
AU  - Norbury, Paul
TI  - A new cohomology class on the moduli space of curves
JO  - Geometry & topology
PY  - 2023
SP  - 2695
EP  - 2761
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2695/
DO  - 10.2140/gt.2023.27.2695
ID  - GT_2023_27_7_a2
ER  - 
%0 Journal Article
%A Norbury, Paul
%T A new cohomology class on the moduli space of curves
%J Geometry & topology
%D 2023
%P 2695-2761
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2695/
%R 10.2140/gt.2023.27.2695
%F GT_2023_27_7_a2
Norbury, Paul. A new cohomology class on the moduli space of curves. Geometry & topology, Tome 27 (2023) no. 7, pp. 2695-2761. doi : 10.2140/gt.2023.27.2695. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2695/

[1] D Abramovich, T J Jarvis, Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003) 685 | DOI

[2] A Alexandrov, Cut-and-join description of generalized Brezin–Gross–Witten model, Adv. Theor. Math. Phys. 22 (2018) 1347 | DOI

[3] J Bergström, Cohomology of moduli spaces of curves of genus three via point counts, J. Reine Angew. Math. 622 (2008) 155 | DOI

[4] J Bergström, O Tommasi, The rational cohomology of M4, Math. Ann. 338 (2007) 207 | DOI

[5] V Bouchard, B Eynard, Think globally, compute locally, J. High Energy Phys. (2013) | DOI

[6] E Brézin, D J Gross, The external field problem in the large N limit of QCD, Phys. Lett. B 97 (1980) 120 | DOI

[7] H L Chang, J Li, W P Li, Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI

[8] L Chekhov, B Eynard, Hermitian matrix model free energy : Feynman graph technique for all genera, J. High Energy Phys. (2006) | DOI

[9] L Chekhov, P Norbury, Topological recursion with hard edges, Internat. J. Math. 30 (2019) | DOI

[10] A Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and rth roots, Compos. Math. 144 (2008) 1461 | DOI

[11] E Clader, S Grushevsky, F Janda, D Zakharov, Powers of the theta divisor and relations in the tautological ring, Int. Math. Res. Not. 2018 (2018) 7725 | DOI

[12] V Delecroix, J Schmitt, J Van Zelm, admcycles: a Sage package for calculations in the tautological ring of the moduli space of stable curves, J. Softw. Algebra Geom. 11 (2021) 89 | DOI

[13] N Do, P Norbury, Topological recursion for irregular spectral curves, J. Lond. Math. Soc. 97 (2018) 398 | DOI

[14] N Do, P Norbury, Topological recursion on the Bessel curve, Commun. Number Theory Phys. 12 (2018) 53 | DOI

[15] B Dubrovin, Geometry of 2D topological field theories, from: "Integrable systems and quantum groups" (editors M Francaviglia, S Greco), Lecture Notes in Math. 1620, Springer (1996) 120 | DOI

[16] P Dunin-Barkowski, P Norbury, N Orantin, A Popolitov, S Shadrin, Primary invariants of Hurwitz Frobenius manifolds, from: "Topological recursion and its influence in analysis, geometry, and topology" (editors C C M Liu, M Mulase), Proc. Sympos. Pure Math. 100, Amer. Math. Soc. (2018) 297

[17] P Dunin-Barkowski, P Norbury, N Orantin, A Popolitov, S Shadrin, Dubrovin’s superpotential as a global spectral curve, J. Inst. Math. Jussieu 18 (2019) 449 | DOI

[18] P Dunin-Barkowski, N Orantin, S Shadrin, L Spitz, Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014) 669 | DOI

[19] P Dunin-Barkowski, S Shadrin, L Spitz, Givental graphs and inversion symmetry, Lett. Math. Phys. 103 (2013) 533 | DOI

[20] T Ekedahl, S Lando, M Shapiro, A Vainshtein, Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001) 297 | DOI

[21] B Eynard, Invariants of spectral curves and intersection theory of moduli spaces of complex curves, Commun. Number Theory Phys. 8 (2014) 541 | DOI

[22] B Eynard, N Orantin, Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007) 347 | DOI

[23] B Eynard, N Orantin, Topological recursion in enumerative geometry and random matrices, J. Phys. A 42 (2009) | DOI

[24] C Faber, R Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI

[25] H Fan, T Jarvis, Y Ruan, Quantum singularity theory for A(r−1) and r–spin theory, Ann. Inst. Fourier (Grenoble) 61 (2011) 2781 | DOI

[26] H Fan, T Jarvis, Y Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013) 1 | DOI

[27] J D Fay, Theta functions on Riemann surfaces, 352, Springer (1973) | DOI

[28] E Getzler, E Looijenga, The Hodge polynomial of M3,1, preprint (1999)

[29] A B Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551 | DOI

[30] D Gross, E Witten, Possible third-order phase transition in the large-N lattice gauge theory, Phys. Rev. D (1980) 446 | DOI

[31] A Hurwitz, Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891) 1 | DOI

[32] F Janda, R Pandharipande, A Pixton, D Zvonkine, Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI

[33] T J Jarvis, T Kimura, A Vaintrob, Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math. 126 (2001) 157 | DOI

[34] T Kimura, X Liu, A genus-3 topological recursion relation, Comm. Math. Phys. 262 (2006) 645 | DOI

[35] T Kimura, X Liu, Topological recursion relations on M3,2, Sci. China Math. 58 (2015) 1909 | DOI

[36] M Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1 | DOI

[37] D Lewanski, A Popolitov, S Shadrin, D Zvonkine, Chiodo formulas for the r–th roots and topological recursion, Lett. Math. Phys. 107 (2017) 901 | DOI

[38] E Looijenga, On the tautological ring of Mg, Invent. Math. 121 (1995) 411 | DOI

[39] M Mirzakhani, Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math. 167 (2007) 179 | DOI

[40] T Miwa, M Jimbo, E Date, Solitons: differential equations, symmetries and infinite-dimensional algebras, 135, Cambridge Univ. Press (2000)

[41] D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI

[42] S M Natanzon, Moduli of Riemann surfaces, real algebraic curves, and their superanalogs, 225, Amer. Math. Soc. (2004) | DOI

[43] P Norbury, Enumerative geometry via the moduli space of super Riemann surfaces, preprint (2020)

[44] P Norbury, Gromov–Witten invariants of P1 coupled to a KdV tau function, Adv. Math. 399 (2022) | DOI

[45] P Norbury, N Scott, Polynomials representing Eynard–Orantin invariants, Q. J. Math. 64 (2013) 515 | DOI

[46] P Norbury, N Scott, Gromov–Witten invariants of P1 and Eynard–Orantin invariants, Geom. Topol. 18 (2014) 1865 | DOI

[47] R Pandharipande, A Pixton, D Zvonkine, Relations on Mg,n via 3–spin structures, J. Amer. Math. Soc. 28 (2015) 279 | DOI

[48] K Saito, Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983) 1231 | DOI

[49] S Shadrin, BCOV theory via Givental group action on cohomological fields theories, Mosc. Math. J. 9 (2009) 411 | DOI

[50] V Shramchenko, Riemann–Hilbert problem associated to Frobenius manifold structures on Hurwitz spaces : irregular singularity, Duke Math. J. 144 (2008) 1 | DOI

[51] D Stanford, E Witten, JT gravity and the ensembles of random matrix theory, Adv. Theor. Math. Phys. 24 (2020) 1475 | DOI

[52] C Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012) 525 | DOI

[53] B Toen, Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford, –Theory 18 (1999) 33 | DOI

[54] E Witten, Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry" (editors H B Lawson Jr., S T Yau), Lehigh Univ. (1991) 243

Cité par Sources :