Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define a collection for of cohomology classes that restrict naturally to boundary divisors. We prove that the intersection numbers can be recursively calculated. We conjecture that a generating function for these intersection numbers is a tau function of the KdV hierarchy. This is analogous to the conjecture of Witten proven by Kontsevich that a generating function for the intersection numbers is a tau function of the KdV hierarchy.
Norbury, Paul 1
@article{GT_2023_27_7_a2, author = {Norbury, Paul}, title = {A new cohomology class on the moduli space of curves}, journal = {Geometry & topology}, pages = {2695--2761}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2023}, doi = {10.2140/gt.2023.27.2695}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2695/} }
Norbury, Paul. A new cohomology class on the moduli space of curves. Geometry & topology, Tome 27 (2023) no. 7, pp. 2695-2761. doi : 10.2140/gt.2023.27.2695. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2695/
[1] Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003) 685 | DOI
, ,[2] Cut-and-join description of generalized Brezin–Gross–Witten model, Adv. Theor. Math. Phys. 22 (2018) 1347 | DOI
,[3] Cohomology of moduli spaces of curves of genus three via point counts, J. Reine Angew. Math. 622 (2008) 155 | DOI
,[4] The rational cohomology of M4, Math. Ann. 338 (2007) 207 | DOI
, ,[5] Think globally, compute locally, J. High Energy Phys. (2013) | DOI
, ,[6] The external field problem in the large N limit of QCD, Phys. Lett. B 97 (1980) 120 | DOI
, ,[7] Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI
, , ,[8] Hermitian matrix model free energy : Feynman graph technique for all genera, J. High Energy Phys. (2006) | DOI
, ,[9] Topological recursion with hard edges, Internat. J. Math. 30 (2019) | DOI
, ,[10] Towards an enumerative geometry of the moduli space of twisted curves and rth roots, Compos. Math. 144 (2008) 1461 | DOI
,[11] Powers of the theta divisor and relations in the tautological ring, Int. Math. Res. Not. 2018 (2018) 7725 | DOI
, , , ,[12] admcycles: a Sage package for calculations in the tautological ring of the moduli space of stable curves, J. Softw. Algebra Geom. 11 (2021) 89 | DOI
, , ,[13] Topological recursion for irregular spectral curves, J. Lond. Math. Soc. 97 (2018) 398 | DOI
, ,[14] Topological recursion on the Bessel curve, Commun. Number Theory Phys. 12 (2018) 53 | DOI
, ,[15] Geometry of 2D topological field theories, from: "Integrable systems and quantum groups" (editors M Francaviglia, S Greco), Lecture Notes in Math. 1620, Springer (1996) 120 | DOI
,[16] Primary invariants of Hurwitz Frobenius manifolds, from: "Topological recursion and its influence in analysis, geometry, and topology" (editors C C M Liu, M Mulase), Proc. Sympos. Pure Math. 100, Amer. Math. Soc. (2018) 297
, , , , ,[17] Dubrovin’s superpotential as a global spectral curve, J. Inst. Math. Jussieu 18 (2019) 449 | DOI
, , , , ,[18] Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys. 328 (2014) 669 | DOI
, , , ,[19] Givental graphs and inversion symmetry, Lett. Math. Phys. 103 (2013) 533 | DOI
, , ,[20] Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math. 146 (2001) 297 | DOI
, , , ,[21] Invariants of spectral curves and intersection theory of moduli spaces of complex curves, Commun. Number Theory Phys. 8 (2014) 541 | DOI
,[22] Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys. 1 (2007) 347 | DOI
, ,[23] Topological recursion in enumerative geometry and random matrices, J. Phys. A 42 (2009) | DOI
, ,[24] Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI
, ,[25] Quantum singularity theory for A(r−1) and r–spin theory, Ann. Inst. Fourier (Grenoble) 61 (2011) 2781 | DOI
, , ,[26] The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013) 1 | DOI
, , ,[27] Theta functions on Riemann surfaces, 352, Springer (1973) | DOI
,[28] The Hodge polynomial of M3,1, preprint (1999)
, ,[29] Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551 | DOI
,[30] Possible third-order phase transition in the large-N lattice gauge theory, Phys. Rev. D (1980) 446 | DOI
, ,[31] Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann. 39 (1891) 1 | DOI
,[32] Double ramification cycles on the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017) 221 | DOI
, , , ,[33] Moduli spaces of higher spin curves and integrable hierarchies, Compositio Math. 126 (2001) 157 | DOI
, , ,[34] A genus-3 topological recursion relation, Comm. Math. Phys. 262 (2006) 645 | DOI
, ,[35] Topological recursion relations on M3,2, Sci. China Math. 58 (2015) 1909 | DOI
, ,[36] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1 | DOI
,[37] Chiodo formulas for the r–th roots and topological recursion, Lett. Math. Phys. 107 (2017) 901 | DOI
, , , ,[38] On the tautological ring of Mg, Invent. Math. 121 (1995) 411 | DOI
,[39] Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math. 167 (2007) 179 | DOI
,[40] Solitons: differential equations, symmetries and infinite-dimensional algebras, 135, Cambridge Univ. Press (2000)
, , ,[41] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 | DOI
,[42] Moduli of Riemann surfaces, real algebraic curves, and their superanalogs, 225, Amer. Math. Soc. (2004) | DOI
,[43] Enumerative geometry via the moduli space of super Riemann surfaces, preprint (2020)
,[44] Gromov–Witten invariants of P1 coupled to a KdV tau function, Adv. Math. 399 (2022) | DOI
,[45] Polynomials representing Eynard–Orantin invariants, Q. J. Math. 64 (2013) 515 | DOI
, ,[46] Gromov–Witten invariants of P1 and Eynard–Orantin invariants, Geom. Topol. 18 (2014) 1865 | DOI
, ,[47] Relations on Mg,n via 3–spin structures, J. Amer. Math. Soc. 28 (2015) 279 | DOI
, , ,[48] Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983) 1231 | DOI
,[49] BCOV theory via Givental group action on cohomological fields theories, Mosc. Math. J. 9 (2009) 411 | DOI
,[50] Riemann–Hilbert problem associated to Frobenius manifold structures on Hurwitz spaces : irregular singularity, Duke Math. J. 144 (2008) 1 | DOI
,[51] JT gravity and the ensembles of random matrix theory, Adv. Theor. Math. Phys. 24 (2020) 1475 | DOI
, ,[52] The structure of 2D semi-simple field theories, Invent. Math. 188 (2012) 525 | DOI
,[53] Théorèmes de Riemann–Roch pour les champs de Deligne–Mumford, –Theory 18 (1999) 33 | DOI
,[54] Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry" (editors H B Lawson Jr., S T Yau), Lehigh Univ. (1991) 243
,Cité par Sources :