Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the Looijenga–Lunts–Verbitsky Lie algebra acting on the cohomology of a hyperkähler variety is a derived invariant, and obtain from this a number of consequences for the action on cohomology of derived equivalences between hyperkähler varieties.
This includes a proof that derived equivalent hyperkähler varieties have isomorphic –Hodge structures, the construction of a rational “Mukai lattice” functorial for derived equivalences, and the computation (up to index ) of the image of the group of auto-equivalences on the cohomology of certain Hilbert squares of surfaces.
Taelman, Lenny 1
@article{GT_2023_27_7_a1, author = {Taelman, Lenny}, title = {Derived equivalences of hyperk\"ahler varieties}, journal = {Geometry & topology}, pages = {2649--2693}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2023}, doi = {10.2140/gt.2023.27.2649}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2649/} }
Taelman, Lenny. Derived equivalences of hyperkähler varieties. Geometry & topology, Tome 27 (2023) no. 7, pp. 2649-2693. doi : 10.2140/gt.2023.27.2649. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2649/
[1] Hodge theory and derived categories of cubic fourfolds, Duke Math. J. 163 (2014) 1885 | DOI
, ,[2] Vector bundles and the Künneth formula, Topology 1 (1962) 245 | DOI
,[3] Vector bundles and homogeneous spaces, from: "Differential geometry" (editor C B Allendoerfer), Proc. Sympos. Pure Math. 3, Amer. Math. Soc. (1961) 7
, ,[4] The Riemann–Roch theorem for analytic embeddings, Topology 1 (1962) 151 | DOI
, ,[5] The index of elliptic operators, II, Ann. of Math. 87 (1968) 531 | DOI
, ,[6] Riemann–Roch and topological K–theory for singular varieties, Acta Math. 143 (1979) 155 | DOI
, , ,[7] Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755
,[8] On the cohomology ring of a simple hyperkähler manifold (on the results of Verbitsky), Geom. Funct. Anal. 6 (1996) 612 | DOI
,[9] Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001) 327 | DOI
, ,[10] Stability conditions on K3 surfaces, Duke Math. J. 141 (2008) 241 | DOI
,[11] The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001) 535 | DOI
, , ,[12] Hochschild cohomology and Atiyah classes, Adv. Math. 224 (2010) 1839 | DOI
, ,[13] Căldăraru’s conjecture and Tsygan’s formality, Ann. of Math. 176 (2012) 865 | DOI
, , ,[14] The Mukai pairing, I : The Hochschild structure, preprint (2003)
,[15] The Mukai pairing, II : The Hochschild–Kostant–Rosenberg isomorphism, Adv. Math. 194 (2005) 34 | DOI
,[16] Instanton strings and hyper-Kähler geometry, Nuclear Phys. B 543 (1999) 545 | DOI
,[17] On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81
, , ,[18] Mirror symmetry for abelian varieties, J. Algebraic Geom. 10 (2001) 433
, , ,[19] The LLV decomposition of hyper-Kähler cohomology, preprint (2019)
, , , ,[20] Abelianisation of orthogonal groups and the fundamental group of modular varieties, J. Algebra 322 (2009) 463 | DOI
, , ,[21] Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001) 941 | DOI
,[22] Autoequivalences of derived category of a K3 surface and monodromy transformations, J. Algebraic Geom. 13 (2004) 513 | DOI
, , , ,[23] Compact hyperkähler manifolds, from: "Calabi–Yau manifolds and related geometries" (editors M Gross, D Huybrechts, D Joyce), Springer (2003) 161 | DOI
,[24] Fourier–Mukai transforms in algebraic geometry, Oxford Univ. Press (2006) | DOI
,[25] Stability conditions for generic K3 categories, Compos. Math. 144 (2008) 134 | DOI
, , ,[26] Derived equivalences of K3 surfaces and orientation, Duke Math. J. 149 (2009) 461 | DOI
, , ,[27] Spin groups over a commutative ring and the associated root data (odd rank case), Beiträge Algebra Geom. 46 (2005) 377
,[28] Equivariant Riemann–Roch for G–quasi-projective varieties, I, –Theory 17 (1999) 1 | DOI
,[29] Quadratic and Hermitian forms over rings, 294, Springer (1991) | DOI
,[30] Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003) 157 | DOI
,[31] On derived autoequivalences of Hilbert schemes and generalized Kummer varieties, Int. Math. Res. Not. 2015 (2015) 10680 | DOI
,[32] A theorem on the existence of exceptional bundles on surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 363
,[33] A Lie algebra attached to a projective variety, Invent. Math. 129 (1997) 361 | DOI
, ,[34] Infinitesimal derived Torelli theorem for K3 surfaces, Int. Math. Res. Not. 2009 (2009) 3190 | DOI
, ,[35] On the moduli space of bundles on K3 surfaces, I, from: "Vector bundles on algebraic varieties", Tata Inst. Fund. Res. Stud. Math. 11, Tata Inst. Fund. Res. (1987) 341
,[36] Equivalences of derived categories and K3 surfaces, J. Math. Sci. 84 (1997) 1361 | DOI
,[37] Derived categories of coherent sheaves and equivalences between them, Uspekhi Mat. Nauk 58 (2003) 89 | DOI
,[38] Derived categories of coherent sheaves, and motives, Uspekhi Mat. Nauk 60 (2005) 231 | DOI
,[39] Groups of autoequivalences of derived categories of smooth projective varieties, PhD thesis, Freie Universität Berlin (2005)
,[40] Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007) 62 | DOI
,[41] On the Beauville form of the known irreducible symplectic varieties, Math. Ann. 340 (2008) 77 | DOI
,[42] Equivariant K–theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 129 | DOI
,[43] On the Hodge structures of compact hyperkähler manifolds, Math. Res. Lett. 28 (2021) 623 | DOI
,[44] Diffeomorphisms and families of Fourier–Mukai transforms in mirror symmetry, from: "Applications of algebraic geometry to coding theory, physics and computation" (editors C Ciliberto, F Hirzebruch, R Miranda, M Teicher), NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer (2001) 317
,[45] Cohomology of compact hyperkaehler manifolds, PhD thesis, Harvard University (1995)
,[46] Cohomology of compact hyperkähler manifolds and its applications, Geom. Funct. Anal. 6 (1996) 601 | DOI
,[47] Mirror symmetry for hyper-Kähler manifolds, from: "Mirror symmetry, III" (editors D H Phong, L Vinet, S T Yau), AMS/IP Stud. Adv. Math. 10, Amer. Math. Soc. (1999) 115 | DOI
,Cité par Sources :