Derived equivalences of hyperkähler varieties
Geometry & topology, Tome 27 (2023) no. 7, pp. 2649-2693.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the Looijenga–Lunts–Verbitsky Lie algebra acting on the cohomology of a hyperkähler variety is a derived invariant, and obtain from this a number of consequences for the action on cohomology of derived equivalences between hyperkähler varieties.

This includes a proof that derived equivalent hyperkähler varieties have isomorphic –Hodge structures, the construction of a rational “Mukai lattice” functorial for derived equivalences, and the computation (up to index 2) of the image of the group of auto-equivalences on the cohomology of certain Hilbert squares of K3 surfaces.

DOI : 10.2140/gt.2023.27.2649
Classification : 14F05, 14J32
Keywords: hyperkähler varieties, derived equivalences, Fourier–Mukai transforms

Taelman, Lenny 1

1 Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, Netherlands
@article{GT_2023_27_7_a1,
     author = {Taelman, Lenny},
     title = {Derived equivalences of hyperk\"ahler varieties},
     journal = {Geometry & topology},
     pages = {2649--2693},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2023},
     doi = {10.2140/gt.2023.27.2649},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2649/}
}
TY  - JOUR
AU  - Taelman, Lenny
TI  - Derived equivalences of hyperkähler varieties
JO  - Geometry & topology
PY  - 2023
SP  - 2649
EP  - 2693
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2649/
DO  - 10.2140/gt.2023.27.2649
ID  - GT_2023_27_7_a1
ER  - 
%0 Journal Article
%A Taelman, Lenny
%T Derived equivalences of hyperkähler varieties
%J Geometry & topology
%D 2023
%P 2649-2693
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2649/
%R 10.2140/gt.2023.27.2649
%F GT_2023_27_7_a1
Taelman, Lenny. Derived equivalences of hyperkähler varieties. Geometry & topology, Tome 27 (2023) no. 7, pp. 2649-2693. doi : 10.2140/gt.2023.27.2649. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2649/

[1] N Addington, R Thomas, Hodge theory and derived categories of cubic fourfolds, Duke Math. J. 163 (2014) 1885 | DOI

[2] M F Atiyah, Vector bundles and the Künneth formula, Topology 1 (1962) 245 | DOI

[3] M F Atiyah, F Hirzebruch, Vector bundles and homogeneous spaces, from: "Differential geometry" (editor C B Allendoerfer), Proc. Sympos. Pure Math. 3, Amer. Math. Soc. (1961) 7

[4] M F Atiyah, F Hirzebruch, The Riemann–Roch theorem for analytic embeddings, Topology 1 (1962) 151 | DOI

[5] M F Atiyah, G B Segal, The index of elliptic operators, II, Ann. of Math. 87 (1968) 531 | DOI

[6] P Baum, W Fulton, R Macpherson, Riemann–Roch and topological K–theory for singular varieties, Acta Math. 143 (1979) 155 | DOI

[7] A Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755

[8] F A Bogomolov, On the cohomology ring of a simple hyperkähler manifold (on the results of Verbitsky), Geom. Funct. Anal. 6 (1996) 612 | DOI

[9] A Bondal, D Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001) 327 | DOI

[10] T Bridgeland, Stability conditions on K3 surfaces, Duke Math. J. 141 (2008) 241 | DOI

[11] T Bridgeland, A King, M Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001) 535 | DOI

[12] D Calaque, M Van Den Bergh, Hochschild cohomology and Atiyah classes, Adv. Math. 224 (2010) 1839 | DOI

[13] D Calaque, C A Rossi, M Van Den Bergh, Căldăraru’s conjecture and Tsygan’s formality, Ann. of Math. 176 (2012) 865 | DOI

[14] A Caldararu, The Mukai pairing, I : The Hochschild structure, preprint (2003)

[15] A Căldăraru, The Mukai pairing, II : The Hochschild–Kostant–Rosenberg isomorphism, Adv. Math. 194 (2005) 34 | DOI

[16] R Dijkgraaf, Instanton strings and hyper-Kähler geometry, Nuclear Phys. B 543 (1999) 545 | DOI

[17] G Ellingsrud, L Göttsche, M Lehn, On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom. 10 (2001) 81

[18] V Golyshev, V Lunts, D Orlov, Mirror symmetry for abelian varieties, J. Algebraic Geom. 10 (2001) 433

[19] M Green, Y J Kim, R Laza, C Robles, The LLV decomposition of hyper-Kähler cohomology, preprint (2019)

[20] V Gritsenko, K Hulek, G K Sankaran, Abelianisation of orthogonal groups and the fundamental group of modular varieties, J. Algebra 322 (2009) 463 | DOI

[21] M Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001) 941 | DOI

[22] S Hosono, B H Lian, K Oguiso, S T Yau, Autoequivalences of derived category of a K3 surface and monodromy transformations, J. Algebraic Geom. 13 (2004) 513 | DOI

[23] D Huybrechts, Compact hyperkähler manifolds, from: "Calabi–Yau manifolds and related geometries" (editors M Gross, D Huybrechts, D Joyce), Springer (2003) 161 | DOI

[24] D Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Univ. Press (2006) | DOI

[25] D Huybrechts, E Macrì, P Stellari, Stability conditions for generic K3 categories, Compos. Math. 144 (2008) 134 | DOI

[26] D Huybrechts, E Macrì, P Stellari, Derived equivalences of K3 surfaces and orientation, Duke Math. J. 149 (2009) 461 | DOI

[27] H Ikai, Spin groups over a commutative ring and the associated root data (odd rank case), Beiträge Algebra Geom. 46 (2005) 377

[28] R Joshua, Equivariant Riemann–Roch for G–quasi-projective varieties, I, –Theory 17 (1999) 1 | DOI

[29] M A Knus, Quadratic and Hermitian forms over rings, 294, Springer (1991) | DOI

[30] M Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003) 157 | DOI

[31] A Krug, On derived autoequivalences of Hilbert schemes and generalized Kummer varieties, Int. Math. Res. Not. 2015 (2015) 10680 | DOI

[32] S A Kuleshov, A theorem on the existence of exceptional bundles on surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 363

[33] E Looijenga, V A Lunts, A Lie algebra attached to a projective variety, Invent. Math. 129 (1997) 361 | DOI

[34] E Macrì, P Stellari, Infinitesimal derived Torelli theorem for K3 surfaces, Int. Math. Res. Not. 2009 (2009) 3190 | DOI

[35] S Mukai, On the moduli space of bundles on K3 surfaces, I, from: "Vector bundles on algebraic varieties", Tata Inst. Fund. Res. Stud. Math. 11, Tata Inst. Fund. Res. (1987) 341

[36] D O Orlov, Equivalences of derived categories and K3 surfaces, J. Math. Sci. 84 (1997) 1361 | DOI

[37] D O Orlov, Derived categories of coherent sheaves and equivalences between them, Uspekhi Mat. Nauk 58 (2003) 89 | DOI

[38] D O Orlov, Derived categories of coherent sheaves, and motives, Uspekhi Mat. Nauk 60 (2005) 231 | DOI

[39] D Ploog, Groups of autoequivalences of derived categories of smooth projective varieties, PhD thesis, Freie Universität Berlin (2005)

[40] D Ploog, Equivariant autoequivalences for finite group actions, Adv. Math. 216 (2007) 62 | DOI

[41] A Rapagnetta, On the Beauville form of the known irreducible symplectic varieties, Math. Ann. 340 (2008) 77 | DOI

[42] G Segal, Equivariant K–theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 129 | DOI

[43] A Soldatenkov, On the Hodge structures of compact hyperkähler manifolds, Math. Res. Lett. 28 (2021) 623 | DOI

[44] B Szendrői, Diffeomorphisms and families of Fourier–Mukai transforms in mirror symmetry, from: "Applications of algebraic geometry to coding theory, physics and computation" (editors C Ciliberto, F Hirzebruch, R Miranda, M Teicher), NATO Sci. Ser. II Math. Phys. Chem. 36, Kluwer (2001) 317

[45] M S Verbitsky, Cohomology of compact hyperkaehler manifolds, PhD thesis, Harvard University (1995)

[46] M Verbitsky, Cohomology of compact hyperkähler manifolds and its applications, Geom. Funct. Anal. 6 (1996) 601 | DOI

[47] M Verbitsky, Mirror symmetry for hyper-Kähler manifolds, from: "Mirror symmetry, III" (editors D H Phong, L Vinet, S T Yau), AMS/IP Stud. Adv. Math. 10, Amer. Math. Soc. (1999) 115 | DOI

Cité par Sources :