Smallest noncyclic quotients of braid and mapping class groups
Geometry & topology, Tome 27 (2023) no. 6, pp. 2479-2496.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the smallest noncyclic quotients of braid groups are symmetric groups, proving a conjecture of Margalit. Moreover, we recover results of Artin and Lin about the classification of homomorphisms from braid groups on n strands to symmetric groups on k letters, where k is at most n. Unlike the original proofs, our method does not use the Bertrand–Chebyshev theorem, answering a question of Artin. Similarly, for mapping class group of closed orientable surfaces, the smallest noncyclic quotient is given by the mod two reduction of the symplectic representation. We provide an elementary proof of this result, originally due to Kielak and Pierro, which proves a conjecture of Zimmermann.

DOI : 10.2140/gt.2023.27.2479
Keywords: smallest noncyclic quotients, braid groups, mapping class groups

Kolay, Sudipta 1

1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
@article{GT_2023_27_6_a7,
     author = {Kolay, Sudipta},
     title = {Smallest noncyclic quotients of braid and mapping class groups},
     journal = {Geometry & topology},
     pages = {2479--2496},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2023},
     doi = {10.2140/gt.2023.27.2479},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2479/}
}
TY  - JOUR
AU  - Kolay, Sudipta
TI  - Smallest noncyclic quotients of braid and mapping class groups
JO  - Geometry & topology
PY  - 2023
SP  - 2479
EP  - 2496
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2479/
DO  - 10.2140/gt.2023.27.2479
ID  - GT_2023_27_6_a7
ER  - 
%0 Journal Article
%A Kolay, Sudipta
%T Smallest noncyclic quotients of braid and mapping class groups
%J Geometry & topology
%D 2023
%P 2479-2496
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2479/
%R 10.2140/gt.2023.27.2479
%F GT_2023_27_6_a7
Kolay, Sudipta. Smallest noncyclic quotients of braid and mapping class groups. Geometry & topology, Tome 27 (2023) no. 6, pp. 2479-2496. doi : 10.2140/gt.2023.27.2479. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2479/

[1] E Artin, Braids and permutations, Ann. of Math. 48 (1947) 643 | DOI

[2] E Artin, Theory of braids, Ann. of Math. 48 (1947) 101 | DOI

[3] J Birman, K H Ko, S J Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322 | DOI

[4] N Caplinger, K Kordek, Small quotients of braid groups, preprint (2020)

[5] P Chebyshev, Mémoire sur les nombres premiers, J. Math. Pures Appl. 17 (1852) 366

[6] L Chen, K Kordek, D Margalit, Homomorphisms between braid groups, preprint (2019)

[7] A Chudnovsky, K Kordek, Q Li, C Partin, Finite quotients of braid groups, Geom. Dedicata 207 (2020) 409 | DOI

[8] B Farb, D Margalit, A primer on mapping class groups, 49, Princeton Univ. Press (2012) | DOI

[9] L C Grove, Classical groups and geometric algebra, 39, Amer. Math. Soc. (2002) | DOI

[10] A Hatcher, D Margalit, Generating the Torelli group, Enseign. Math. 58 (2012) 165 | DOI

[11] O Hölder, Bildung zusammengesetzter Gruppen, Math. Ann. 46 (1895) 321 | DOI

[12] D Kielak, E Pierro, On the smallest non-trivial quotients of mapping class groups, Groups Geom. Dyn. 14 (2020) 489 | DOI

[13] K Kordek, D Margalit, Homomorphisms of commutator subgroups of braid groups, Bull. Lond. Math. Soc. 54 (2022) 95 | DOI

[14] M Korkmaz, Low-dimensional homology groups of mapping class groups: a survey, Turkish J. Math. 26 (2002) 101

[15] J Lanier, D Margalit, Normal generators for mapping class groups are abundant, Comment. Math. Helv. 97 (2022) 1 | DOI

[16] V Lin, Braids and permutations, preprint (2004)

[17] D Mumford, Tata lectures on theta, I, 28, Birkhäuser (1983) | DOI

[18] N Scherich, Y Verberne, Finite image homomorphisms of the braid group and its generalizations, preprint (2020)

[19] B P Zimmermann, On minimal finite quotients of mapping class groups, Rocky Mountain J. Math. 42 (2012) 1411 | DOI

Cité par Sources :