Discrete subgroups of small critical exponent
Geometry & topology, Tome 27 (2023) no. 6, pp. 2347-2381.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that finitely generated Kleinian groups Γ < Isom(n) with small critical exponent are always convex cocompact. We also prove some geometric properties for any complete pinched negatively curved manifold with critical exponent less than 1.

DOI : 10.2140/gt.2023.27.2347
Keywords: discrete subgroups, critical exponent, convex compactness

Liu, Beibei 1 ; Wang, Shi 2

1 Department of Mathematics, The Ohio State University, Columbus, OH, United States
2 Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China
@article{GT_2023_27_6_a5,
     author = {Liu, Beibei and Wang, Shi},
     title = {Discrete subgroups of small critical exponent},
     journal = {Geometry & topology},
     pages = {2347--2381},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2023},
     doi = {10.2140/gt.2023.27.2347},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2347/}
}
TY  - JOUR
AU  - Liu, Beibei
AU  - Wang, Shi
TI  - Discrete subgroups of small critical exponent
JO  - Geometry & topology
PY  - 2023
SP  - 2347
EP  - 2381
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2347/
DO  - 10.2140/gt.2023.27.2347
ID  - GT_2023_27_6_a5
ER  - 
%0 Journal Article
%A Liu, Beibei
%A Wang, Shi
%T Discrete subgroups of small critical exponent
%J Geometry & topology
%D 2023
%P 2347-2381
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2347/
%R 10.2140/gt.2023.27.2347
%F GT_2023_27_6_a5
Liu, Beibei; Wang, Shi. Discrete subgroups of small critical exponent. Geometry & topology, Tome 27 (2023) no. 6, pp. 2347-2381. doi : 10.2140/gt.2023.27.2347. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2347/

[1] I Agol, Tameness of hyperbolic 3–manifolds, preprint (2004)

[2] L V Ahlfors, Finitely generated Kleinian groups, Amer. J. Math. 86 (1964) 413 | DOI

[3] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, 61, Birkhäuser (1985) | DOI

[4] H Bass, The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. 25 (1972) 603 | DOI

[5] Y Benoist, D Hulin, Harmonic quasi-isometric maps III : Quotients of Hadamard manifolds, Geom. Dedicata 217 (2023) 52 | DOI

[6] G Besson, G Courtois, S Gallot, Rigidity of amalgamated products in negative curvature, J. Differential Geom. 79 (2008) 335

[7] G Besson, G Courtois, S Gallot, Uniform growth of groups acting on Cartan–Hadamard spaces, J. Eur. Math. Soc. 13 (2011) 1343 | DOI

[8] M Bestvina, Questions in geometric group theory, (2000)

[9] C J Bishop, P W Jones, Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997) 1 | DOI

[10] F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71 | DOI

[11] B H Bowditch, Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245 | DOI

[12] B H Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995) 229 | DOI

[13] B H Bowditch, The ending lamination theorem, preprint (2011)

[14] J F Brock, R D Canary, Y N Minsky, The classification of Kleinian surface groups, II : The ending lamination conjecture, Ann. of Math. 176 (2012) 1 | DOI

[15] Y D Burago, V A Zalgaller, Geometric inequalities, 285, Springer (1988) | DOI

[16] P Buser, B Colbois, J Dodziuk, Tubes and eigenvalues for negatively curved manifolds, J. Geom. Anal. 3 (1993) 1 | DOI

[17] D Calegari, scl, 20, Math. Soc. Japan (2009) | DOI

[18] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385 | DOI

[19] C Connell, B Farb, D B Mcreynolds, A vanishing theorem for the homology of discrete subgroups of Sp(n,1) and F4−20, J. Lond. Math. Soc. 94 (2016) 357 | DOI

[20] S Dey, M Kapovich, B Liu, Ping-pong in Hadamard manifolds, Münster J. Math. 12 (2019) 453 | DOI

[21] R E Greene, H Wu, C∞ approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. École Norm. Sup. 12 (1979) 47 | DOI

[22] Y Guivarc’H, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973) 333

[23] N A Gusevskii, Geometric decomposition of Kleinian groups in space, Dokl. Akad. Nauk SSSR 301 (1988) 529

[24] E Heintze, H C Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977) 481

[25] Y Hou, Kleinian groups of small Hausdorff dimension are classical Schottky groups, I, Geom. Topol. 14 (2010) 473 | DOI

[26] Y Hou, All finitely generated Kleinian groups of small Hausdorff dimension are classical Schottky groups, Math. Z. 294 (2020) 901 | DOI

[27] Y Hou, The classification of kleinian groups of hausdorff dimension at most one, Q. J. Math. 74 (2023) 607 | DOI

[28] G Italiano, B Martelli, M Migliorini, Hyperbolic manifolds that fiber algebraically up to dimension 8, J. Inst. Math. Jussieu (2022) | DOI

[29] M Kapovich, On the absence of Sullivan’s cusp finiteness theorem in higher dimensions, from: "Algebra and analysis" (editors L A Bokut’, M Hazewinkel, Y G Reshetnyak, S Ivanov), Amer. Math. Soc. Transl. Ser. 2 163, Amer. Math. Soc. (1995) 77 | DOI

[30] M Kapovich, Kleinian groups in higher dimensions, from: "Geometry and dynamics of groups and spaces" (editors M Kapranov, S Kolyada, Y I Manin, P Moree, L Potyagailo), Progr. Math. 265, Birkhäuser (2008) 487 | DOI

[31] M Kapovich, Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal. 18 (2009) 2017 | DOI

[32] M Kapovich, B Liu, Geometric finiteness in negatively pinched Hadamard manifolds, Ann. Acad. Sci. Fenn. Math. 44 (2019) 841 | DOI

[33] M Kapovich, L Potyagailo, On the absence of Ahlfors’ finiteness theorem for Kleinian groups in dimension three, Topology Appl. 40 (1991) 83 | DOI

[34] M È Kapovich, L D Potyagailo, On the absence of finiteness theorems of Ahlfors and Sullivan for Kleinian groups in higher dimensions, Sibirsk. Mat. Zh. 32 (1991) 61 | DOI

[35] R S Kulkarni, Groups with domains of discontinuity, Math. Ann. 237 (1978) 253 | DOI

[36] Y Minsky, The classification of Kleinian surface groups, I : Models and bounds, Ann. of Math. 171 (2010) 1 | DOI

[37] C B Morrey Jr., The problem of Plateau on a Riemannian manifold, Ann. of Math. 49 (1948) 807 | DOI

[38] P J Nicholls, The ergodic theory of discrete groups, 143, Cambridge Univ. Press (1989) | DOI

[39] P Pankka, J Souto, Free vs. locally free Kleinian groups, J. Reine Angew. Math. 746 (2019) 149 | DOI

[40] L Potyagailo, The problem of finiteness for Kleinian groups in 3–space, from: "Knots 90" (editor A Kawauchi), de Gruyter (1992) 619 | DOI

[41] L Potyagailo, Finitely generated Kleinian groups in 3–space and 3–manifolds of infinite homotopy type, Trans. Amer. Math. Soc. 344 (1994) 57 | DOI

[42] T Soma, Geometric approach to ending lamination conjecture, preprint (2008)

[43] J R Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. 88 (1968) 312 | DOI

[44] D Sullivan, A finiteness theorem for cusps, Acta Math. 147 (1981) 289 | DOI

Cité par Sources :