Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that finitely generated Kleinian groups with small critical exponent are always convex cocompact. We also prove some geometric properties for any complete pinched negatively curved manifold with critical exponent less than .
Liu, Beibei 1 ; Wang, Shi 2
@article{GT_2023_27_6_a5, author = {Liu, Beibei and Wang, Shi}, title = {Discrete subgroups of small critical exponent}, journal = {Geometry & topology}, pages = {2347--2381}, publisher = {mathdoc}, volume = {27}, number = {6}, year = {2023}, doi = {10.2140/gt.2023.27.2347}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2347/} }
Liu, Beibei; Wang, Shi. Discrete subgroups of small critical exponent. Geometry & topology, Tome 27 (2023) no. 6, pp. 2347-2381. doi : 10.2140/gt.2023.27.2347. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2347/
[1] Tameness of hyperbolic 3–manifolds, preprint (2004)
,[2] Finitely generated Kleinian groups, Amer. J. Math. 86 (1964) 413 | DOI
,[3] Manifolds of nonpositive curvature, 61, Birkhäuser (1985) | DOI
, , ,[4] The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc. 25 (1972) 603 | DOI
,[5] Harmonic quasi-isometric maps III : Quotients of Hadamard manifolds, Geom. Dedicata 217 (2023) 52 | DOI
, ,[6] Rigidity of amalgamated products in negative curvature, J. Differential Geom. 79 (2008) 335
, , ,[7] Uniform growth of groups acting on Cartan–Hadamard spaces, J. Eur. Math. Soc. 13 (2011) 1343 | DOI
, , ,[8] Questions in geometric group theory, (2000)
,[9] Hausdorff dimension and Kleinian groups, Acta Math. 179 (1997) 1 | DOI
, ,[10] Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986) 71 | DOI
,[11] Geometrical finiteness for hyperbolic groups, J. Funct. Anal. 113 (1993) 245 | DOI
,[12] Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995) 229 | DOI
,[13] The ending lamination theorem, preprint (2011)
,[14] The classification of Kleinian surface groups, II : The ending lamination conjecture, Ann. of Math. 176 (2012) 1 | DOI
, , ,[15] Geometric inequalities, 285, Springer (1988) | DOI
, ,[16] Tubes and eigenvalues for negatively curved manifolds, J. Geom. Anal. 3 (1993) 1 | DOI
, , ,[17] scl, 20, Math. Soc. Japan (2009) | DOI
,[18] Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385 | DOI
, ,[19] A vanishing theorem for the homology of discrete subgroups of Sp(n,1) and F4−20, J. Lond. Math. Soc. 94 (2016) 357 | DOI
, , ,[20] Ping-pong in Hadamard manifolds, Münster J. Math. 12 (2019) 453 | DOI
, , ,[21] C∞ approximations of convex, subharmonic, and plurisubharmonic functions, Ann. Sci. École Norm. Sup. 12 (1979) 47 | DOI
, ,[22] Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France 101 (1973) 333
,[23] Geometric decomposition of Kleinian groups in space, Dokl. Akad. Nauk SSSR 301 (1988) 529
,[24] Geometry of horospheres, J. Differential Geometry 12 (1977) 481
, ,[25] Kleinian groups of small Hausdorff dimension are classical Schottky groups, I, Geom. Topol. 14 (2010) 473 | DOI
,[26] All finitely generated Kleinian groups of small Hausdorff dimension are classical Schottky groups, Math. Z. 294 (2020) 901 | DOI
,[27] The classification of kleinian groups of hausdorff dimension at most one, Q. J. Math. 74 (2023) 607 | DOI
,[28] Hyperbolic manifolds that fiber algebraically up to dimension 8, J. Inst. Math. Jussieu (2022) | DOI
, , ,[29] On the absence of Sullivan’s cusp finiteness theorem in higher dimensions, from: "Algebra and analysis" (editors L A Bokut’, M Hazewinkel, Y G Reshetnyak, S Ivanov), Amer. Math. Soc. Transl. Ser. 2 163, Amer. Math. Soc. (1995) 77 | DOI
,[30] Kleinian groups in higher dimensions, from: "Geometry and dynamics of groups and spaces" (editors M Kapranov, S Kolyada, Y I Manin, P Moree, L Potyagailo), Progr. Math. 265, Birkhäuser (2008) 487 | DOI
,[31] Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal. 18 (2009) 2017 | DOI
,[32] Geometric finiteness in negatively pinched Hadamard manifolds, Ann. Acad. Sci. Fenn. Math. 44 (2019) 841 | DOI
, ,[33] On the absence of Ahlfors’ finiteness theorem for Kleinian groups in dimension three, Topology Appl. 40 (1991) 83 | DOI
, ,[34] On the absence of finiteness theorems of Ahlfors and Sullivan for Kleinian groups in higher dimensions, Sibirsk. Mat. Zh. 32 (1991) 61 | DOI
, ,[35] Groups with domains of discontinuity, Math. Ann. 237 (1978) 253 | DOI
,[36] The classification of Kleinian surface groups, I : Models and bounds, Ann. of Math. 171 (2010) 1 | DOI
,[37] The problem of Plateau on a Riemannian manifold, Ann. of Math. 49 (1948) 807 | DOI
,[38] The ergodic theory of discrete groups, 143, Cambridge Univ. Press (1989) | DOI
,[39] Free vs. locally free Kleinian groups, J. Reine Angew. Math. 746 (2019) 149 | DOI
, ,[40] The problem of finiteness for Kleinian groups in 3–space, from: "Knots 90" (editor A Kawauchi), de Gruyter (1992) 619 | DOI
,[41] Finitely generated Kleinian groups in 3–space and 3–manifolds of infinite homotopy type, Trans. Amer. Math. Soc. 344 (1994) 57 | DOI
,[42] Geometric approach to ending lamination conjecture, preprint (2008)
,[43] On torsion-free groups with infinitely many ends, Ann. of Math. 88 (1968) 312 | DOI
,[44] A finiteness theorem for cusps, Acta Math. 147 (1981) 289 | DOI
,Cité par Sources :