The infimum of the dual volume of convex cocompact hyperbolic 3–manifolds
Geometry & topology, Tome 27 (2023) no. 6, pp. 2319-2346.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the infimum of the dual volume of the convex core of a convex cocompact hyperbolic 3–manifold with incompressible boundary coincides with the infimum of the Riemannian volume of its convex core, as we vary the geometry by quasi-isometric deformations. We deduce a linear lower bound of the volume of the convex core of a quasi-Fuchsian manifold in terms of the length of its bending measured lamination, with optimal multiplicative constant.

DOI : 10.2140/gt.2023.27.2319
Keywords: hyperbolic geometry, dual volume, Kleinian groups, convex core, convex cocompact

Mazzoli, Filippo 1

1 Department of Mathematics, University of Virginia, Charlotteville, VA, United States
@article{GT_2023_27_6_a4,
     author = {Mazzoli, Filippo},
     title = {The infimum of the dual volume of convex cocompact hyperbolic 3{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {2319--2346},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2023},
     doi = {10.2140/gt.2023.27.2319},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2319/}
}
TY  - JOUR
AU  - Mazzoli, Filippo
TI  - The infimum of the dual volume of convex cocompact hyperbolic 3–manifolds
JO  - Geometry & topology
PY  - 2023
SP  - 2319
EP  - 2346
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2319/
DO  - 10.2140/gt.2023.27.2319
ID  - GT_2023_27_6_a4
ER  - 
%0 Journal Article
%A Mazzoli, Filippo
%T The infimum of the dual volume of convex cocompact hyperbolic 3–manifolds
%J Geometry & topology
%D 2023
%P 2319-2346
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2319/
%R 10.2140/gt.2023.27.2319
%F GT_2023_27_6_a4
Mazzoli, Filippo. The infimum of the dual volume of convex cocompact hyperbolic 3–manifolds. Geometry & topology, Tome 27 (2023) no. 6, pp. 2319-2346. doi : 10.2140/gt.2023.27.2319. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2319/

[1] L Bers, Spaces of Kleinian groups, from: "Several complex variables, I" (editor J Horváth), Springer (1970) 9 | DOI

[2] F Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139 | DOI

[3] F Bonahon, Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233 | DOI

[4] F Bonahon, A Schläfli-type formula for convex cores of hyperbolic 3–manifolds, J. Differential Geom. 50 (1998) 25

[5] F Bonahon, Variations of the boundary geometry of 3–dimensional hyperbolic convex cores, J. Differential Geom. 50 (1998) 1

[6] F Bonsante, J Danciger, S Maloni, J M Schlenker, The induced metric on the boundary of the convex hull of a quasicircle in hyperbolic and anti–de Sitter geometry, Geom. Topol. 25 (2021) 2827 | DOI

[7] H Brezis, Functional analysis, Sobolev spaces and partial differential equations, Springer (2011) | DOI

[8] M Bridgeman, Average bending of convex pleated planes in hyperbolic three-space, Invent. Math. 132 (1998) 381 | DOI

[9] M Bridgeman, J Brock, K Bromberg, Schwarzian derivatives, projective structures, and the Weil–Petersson gradient flow for renormalized volume, Duke Math. J. 168 (2019) 867 | DOI

[10] M Bridgeman, J Brock, K Bromberg, The Weil–Petersson gradient flow of renormalized volume and 3–dimensional convex cores, preprint (2021)

[11] M Bridgeman, R D Canary, Bounding the bending of a hyperbolic 3–manifold, Pacific J. Math. 218 (2005) 299 | DOI

[12] J F Brock, The Weil–Petersson metric and volumes of 3–dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003) 495 | DOI

[13] R D Canary, D Epstein, A Marden, editors, Fundamentals of hyperbolic geometry: selected expositions, 328, Cambridge Univ. Press (2006) | DOI

[14] L C Evans, Partial differential equations, 19, Amer. Math. Soc. (1998) | DOI

[15] A E Fischer, J E Marsden, Deformations of the scalar curvature, Duke Math. J. 42 (1975) 519

[16] F P Gardiner, N Lakic, Quasiconformal Teichmüller theory, 76, Amer. Math. Soc. (2000) | DOI

[17] M Kapovich, Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001) | DOI

[18] I Kra, On spaces of Kleinian groups, Comment. Math. Helv. 47 (1972) 53 | DOI

[19] K Krasnov, J M Schlenker, On the renormalized volume of hyperbolic 3–manifolds, Comm. Math. Phys. 279 (2008) 637 | DOI

[20] K Krasnov, J M Schlenker, A symplectic map between hyperbolic and complex Teichmüller theory, Duke Math. J. 150 (2009) 331 | DOI

[21] F Labourie, Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques, Bull. Soc. Math. France 119 (1991) 307 | DOI

[22] F Labourie, Métriques prescrites sur le bord des variétés hyperboliques de dimension 3, J. Differential Geom. 35 (1992) 609

[23] F Labourie, Surfaces convexes dans l’espace hyperbolique et CP1–structures, J. London Math. Soc. 45 (1992) 549 | DOI

[24] F Labourie, Un lemme de Morse pour les surfaces convexes, Invent. Math. 141 (2000) 239 | DOI

[25] J M Lee, Introduction to Riemannian manifolds, 176, Springer (2018) | DOI

[26] A Marden, Outer circles : an introduction to hyperbolic 3–manifolds, Cambridge Univ. Press (2007) | DOI

[27] B Maskit, Self-maps on Kleinian groups, Amer. J. Math. 93 (1971) 840 | DOI

[28] F Mazzoli, Constant curvature surfaces and volumes of convex co-compact hyperbolic manifolds, PhD thesis, Université du Luxembourg (2020)

[29] F Mazzoli, The dual Bonahon–Schläfli formula, Algebr. Geom. Topol. 21 (2021) 279 | DOI

[30] F Mazzoli, The dual volume of quasi-Fuchsian manifolds and the Weil–Petersson distance, Trans. Amer. Math. Soc. 375 (2022) 695

[31] F V Pallete, Continuity of the renormalized volume under geometric limits, preprint (2016)

[32] F V Pallete, Upper bounds on renormalized volume for Schottky groups, preprint (2019)

[33] J G Ratcliffe, Foundations of hyperbolic manifolds, 149, Springer (2006) | DOI

[34] I Rivin, J M Schlenker, On the Schlafli differential formula, preprint (2000)

[35] H Rosenberg, J Spruck, On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space, J. Differential Geom. 40 (1994) 379

[36] J M Schlenker, Hypersurfaces in Hn and the space of its horospheres, Geom. Funct. Anal. 12 (2002) 395 | DOI

[37] J M Schlenker, Hyperbolic manifolds with convex boundary, Invent. Math. 163 (2006) 109 | DOI

[38] J M Schlenker, The renormalized volume and the volume of the convex core of quasifuchsian manifolds, Math. Res. Lett. 20 (2013) 773 | DOI

[39] J M Schlenker, Notes on the Schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds, preprint (2017)

[40] P A Storm, Minimal volume Alexandrov spaces, J. Differential Geom. 61 (2002) 195

[41] P A Storm, Hyperbolic convex cores and simplicial volume, Duke Math. J. 140 (2007) 281 | DOI

[42] W P Thurston, The geometry and topology of three-manifolds, lecture notes (1979)

[43] A J Tromba, Teichmüller theory in Riemannian geometry, Birkhäuser (1992) 220 | DOI

Cité par Sources :