Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the infimum of the dual volume of the convex core of a convex cocompact hyperbolic –manifold with incompressible boundary coincides with the infimum of the Riemannian volume of its convex core, as we vary the geometry by quasi-isometric deformations. We deduce a linear lower bound of the volume of the convex core of a quasi-Fuchsian manifold in terms of the length of its bending measured lamination, with optimal multiplicative constant.
Mazzoli, Filippo 1
@article{GT_2023_27_6_a4, author = {Mazzoli, Filippo}, title = {The infimum of the dual volume of convex cocompact hyperbolic 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {2319--2346}, publisher = {mathdoc}, volume = {27}, number = {6}, year = {2023}, doi = {10.2140/gt.2023.27.2319}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2319/} }
TY - JOUR AU - Mazzoli, Filippo TI - The infimum of the dual volume of convex cocompact hyperbolic 3–manifolds JO - Geometry & topology PY - 2023 SP - 2319 EP - 2346 VL - 27 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2319/ DO - 10.2140/gt.2023.27.2319 ID - GT_2023_27_6_a4 ER -
Mazzoli, Filippo. The infimum of the dual volume of convex cocompact hyperbolic 3–manifolds. Geometry & topology, Tome 27 (2023) no. 6, pp. 2319-2346. doi : 10.2140/gt.2023.27.2319. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2319/
[1] Spaces of Kleinian groups, from: "Several complex variables, I" (editor J Horváth), Springer (1970) 9 | DOI
,[2] The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139 | DOI
,[3] Shearing hyperbolic surfaces, bending pleated surfaces and Thurston’s symplectic form, Ann. Fac. Sci. Toulouse Math. 5 (1996) 233 | DOI
,[4] A Schläfli-type formula for convex cores of hyperbolic 3–manifolds, J. Differential Geom. 50 (1998) 25
,[5] Variations of the boundary geometry of 3–dimensional hyperbolic convex cores, J. Differential Geom. 50 (1998) 1
,[6] The induced metric on the boundary of the convex hull of a quasicircle in hyperbolic and anti–de Sitter geometry, Geom. Topol. 25 (2021) 2827 | DOI
, , , ,[7] Functional analysis, Sobolev spaces and partial differential equations, Springer (2011) | DOI
,[8] Average bending of convex pleated planes in hyperbolic three-space, Invent. Math. 132 (1998) 381 | DOI
,[9] Schwarzian derivatives, projective structures, and the Weil–Petersson gradient flow for renormalized volume, Duke Math. J. 168 (2019) 867 | DOI
, , ,[10] The Weil–Petersson gradient flow of renormalized volume and 3–dimensional convex cores, preprint (2021)
, , ,[11] Bounding the bending of a hyperbolic 3–manifold, Pacific J. Math. 218 (2005) 299 | DOI
, ,[12] The Weil–Petersson metric and volumes of 3–dimensional hyperbolic convex cores, J. Amer. Math. Soc. 16 (2003) 495 | DOI
,[13] Fundamentals of hyperbolic geometry: selected expositions, 328, Cambridge Univ. Press (2006) | DOI
, , , editors,[14] Partial differential equations, 19, Amer. Math. Soc. (1998) | DOI
,[15] Deformations of the scalar curvature, Duke Math. J. 42 (1975) 519
, ,[16] Quasiconformal Teichmüller theory, 76, Amer. Math. Soc. (2000) | DOI
, ,[17] Hyperbolic manifolds and discrete groups, 183, Birkhäuser (2001) | DOI
,[18] On spaces of Kleinian groups, Comment. Math. Helv. 47 (1972) 53 | DOI
,[19] On the renormalized volume of hyperbolic 3–manifolds, Comm. Math. Phys. 279 (2008) 637 | DOI
, ,[20] A symplectic map between hyperbolic and complex Teichmüller theory, Duke Math. J. 150 (2009) 331 | DOI
, ,[21] Problème de Minkowski et surfaces à courbure constante dans les variétés hyperboliques, Bull. Soc. Math. France 119 (1991) 307 | DOI
,[22] Métriques prescrites sur le bord des variétés hyperboliques de dimension 3, J. Differential Geom. 35 (1992) 609
,[23] Surfaces convexes dans l’espace hyperbolique et CP1–structures, J. London Math. Soc. 45 (1992) 549 | DOI
,[24] Un lemme de Morse pour les surfaces convexes, Invent. Math. 141 (2000) 239 | DOI
,[25] Introduction to Riemannian manifolds, 176, Springer (2018) | DOI
,[26] Outer circles : an introduction to hyperbolic 3–manifolds, Cambridge Univ. Press (2007) | DOI
,[27] Self-maps on Kleinian groups, Amer. J. Math. 93 (1971) 840 | DOI
,[28] Constant curvature surfaces and volumes of convex co-compact hyperbolic manifolds, PhD thesis, Université du Luxembourg (2020)
,[29] The dual Bonahon–Schläfli formula, Algebr. Geom. Topol. 21 (2021) 279 | DOI
,[30] The dual volume of quasi-Fuchsian manifolds and the Weil–Petersson distance, Trans. Amer. Math. Soc. 375 (2022) 695
,[31] Continuity of the renormalized volume under geometric limits, preprint (2016)
,[32] Upper bounds on renormalized volume for Schottky groups, preprint (2019)
,[33] Foundations of hyperbolic manifolds, 149, Springer (2006) | DOI
,[34] On the Schlafli differential formula, preprint (2000)
, ,[35] On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space, J. Differential Geom. 40 (1994) 379
, ,[36] Hypersurfaces in Hn and the space of its horospheres, Geom. Funct. Anal. 12 (2002) 395 | DOI
,[37] Hyperbolic manifolds with convex boundary, Invent. Math. 163 (2006) 109 | DOI
,[38] The renormalized volume and the volume of the convex core of quasifuchsian manifolds, Math. Res. Lett. 20 (2013) 773 | DOI
,[39] Notes on the Schwarzian tensor and measured foliations at infinity of quasifuchsian manifolds, preprint (2017)
,[40] Minimal volume Alexandrov spaces, J. Differential Geom. 61 (2002) 195
,[41] Hyperbolic convex cores and simplicial volume, Duke Math. J. 140 (2007) 281 | DOI
,[42] The geometry and topology of three-manifolds, lecture notes (1979)
,[43] Teichmüller theory in Riemannian geometry, Birkhäuser (1992) 220 | DOI
,Cité par Sources :