On dense totipotent free subgroups in full groups
Geometry & topology, Tome 27 (2023) no. 6, pp. 2297-2318.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study probability measure preserving (p.m.p.) nonfree actions of free groups and the associated IRSs. The perfect kernel of a countable group Γ is the largest closed subspace of the space of subgroups of Γ without isolated points. We introduce the class of totipotent ergodic p.m.p. actions of Γ: those for which almost every point-stabilizer has dense conjugacy class in the perfect kernel. Equivalently, the support of the associated IRS is as large as possible, namely it is equal to the whole perfect kernel. We prove that every ergodic p.m.p. equivalence relation of cost  < r can be realized by the orbits of an action of the free group Fr on r generators that is totipotent and such that the image in the full group [] is dense. We explain why these actions have no minimal models. This also provides a continuum of pairwise orbit inequivalent invariant random subgroups of Fr, all of whose supports are equal to the whole space of infinite-index subgroups. We are led to introduce a property of topologically generating pairs for full groups (which we call evanescence) and establish a genericity result about their existence. We show that their existence characterizes cost 1.

DOI : 10.2140/gt.2023.27.2297
Keywords: measurable group actions, nonfree actions, free groups, transitive actions of countable groups, IRS, space of subgroups, ergodic equivalence relations, orbit equivalence

Carderi, Alessandro 1 ; Gaboriau, Damien 2 ; Le Maître, François 3

1 Fakultät für Mathematik, Institut für Algebra und Geometrie, Karlsruhe Institute of Technology, Karlsruhe, Germany
2 Unité de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon, Lyon, France
3 Institut de Mathématiques de Jussieu-PRG, Université de Paris, Paris, France
@article{GT_2023_27_6_a3,
     author = {Carderi, Alessandro and Gaboriau, Damien and Le Ma{\^\i}tre, Fran\c{c}ois},
     title = {On dense totipotent free subgroups in full groups},
     journal = {Geometry & topology},
     pages = {2297--2318},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2023},
     doi = {10.2140/gt.2023.27.2297},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2297/}
}
TY  - JOUR
AU  - Carderi, Alessandro
AU  - Gaboriau, Damien
AU  - Le Maître, François
TI  - On dense totipotent free subgroups in full groups
JO  - Geometry & topology
PY  - 2023
SP  - 2297
EP  - 2318
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2297/
DO  - 10.2140/gt.2023.27.2297
ID  - GT_2023_27_6_a3
ER  - 
%0 Journal Article
%A Carderi, Alessandro
%A Gaboriau, Damien
%A Le Maître, François
%T On dense totipotent free subgroups in full groups
%J Geometry & topology
%D 2023
%P 2297-2318
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2297/
%R 10.2140/gt.2023.27.2297
%F GT_2023_27_6_a3
Carderi, Alessandro; Gaboriau, Damien; Le Maître, François. On dense totipotent free subgroups in full groups. Geometry & topology, Tome 27 (2023) no. 6, pp. 2297-2318. doi : 10.2140/gt.2023.27.2297. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2297/

[1] M Abért, Y Glasner, B Virág, Kesten’s theorem for invariant random subgroups, Duke Math. J. 163 (2014) 465 | DOI

[2] L Bowen, Invariant random subgroups of the free group, Groups Geom. Dyn. 9 (2015) 891 | DOI

[3] L Bowen, R Grigorchuk, R Kravchenko, Invariant random subgroups of lamplighter groups, Israel J. Math. 207 (2015) 763 | DOI

[4] L Bowen, R Grigorchuk, R Kravchenko, Characteristic random subgroups of geometric groups and free abelian groups of infinite rank, Trans. Amer. Math. Soc. 369 (2017) 755 | DOI

[5] M L Condic, Totipotency: what it is and what it is not, Stem Cells and Development 23 (2014) 796 | DOI

[6] H A Dye, On groups of measure preserving transformations, I, Amer. J. Math. 81 (1959) 119 | DOI

[7] A Eisenmann, Y Glasner, Generic IRS in free groups, after Bowen, Proc. Amer. Math. Soc. 144 (2016) 4231 | DOI

[8] D Gaboriau, Coût des relations d’équivalence et des groupes, Invent. Math. 139 (2000) 41 | DOI

[9] D Gaboriau, Orbit equivalence and measured group theory, from: "Proceedings of the International Congress of Mathematicians, III" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan), Hindustan (2010) 1501

[10] E Glasner, B Weiss, Uniformly recurrent subgroups, from: "Recent trends in ergodic theory and dynamical systems" (editors S Bhattacharya, T Das, A Ghosh, R Shah), Contemp. Math. 631, Amer. Math. Soc. (2015) 63 | DOI

[11] A S Kechris, Global aspects of ergodic group actions, 160, Amer. Math. Soc. (2010) | DOI

[12] A S Kechris, B D Miller, Topics in orbit equivalence, 1852, Springer (2004) | DOI

[13] A S Kechris, V Quorning, Co-induction and invariant random subgroups, Groups Geom. Dyn. 13 (2019) 1151 | DOI

[14] J Kittrell, T Tsankov, Topological properties of full groups, Ergodic Theory Dynam. Systems 30 (2010) 525 | DOI

[15] F Le Maître, The number of topological generators for full groups of ergodic equivalence relations, Invent. Math. 198 (2014) 261 | DOI

[16] F Le Maître, Sur les groupes pleins préservant une mesure de probabilité, PhD thesis, ENS Lyon (2014)

[17] F Le Maître, On full groups of non-ergodic probability-measure-preserving equivalence relations, Ergodic Theory Dynam. Systems 36 (2016) 2218 | DOI

[18] F Le Maître, Highly faithful actions and dense free subgroups in full groups, Groups Geom. Dyn. 12 (2018) 207 | DOI

[19] D S Ornstein, D J Rudolph, B Weiss, Equivalence of measure preserving transformations, 262, Amer. Math. Soc. (1982) | DOI

[20] R Skipper, P Wesolek, On the Cantor–Bendixson rank of the Grigorchuk group and the Gupta–Sidki 3 group, J. Algebra 555 (2020) 386 | DOI

[21] G Stuck, R J Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. 139 (1994) 723 | DOI

[22] B Weiss, Minimal models for free actions, from: "Dynamical systems and group actions", Contemp. Math. 567, Amer. Math. Soc. (2012) 249 | DOI

Cité par Sources :