Large-scale geometry of big mapping class groups
Geometry & topology, Tome 27 (2023) no. 6, pp. 2237-2296.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the large-scale geometry of mapping class groups of surfaces of infinite type, using the framework of Rosendal for coarse geometry of non-locally-compact groups. We give a complete classification of those surfaces whose mapping class groups have local coarse boundedness (the analog of local compactness). When the end space of the surface is countable or tame, we also give a classification of those surfaces where there exists a coarsely bounded generating set (the analog of finite or compact generation, giving the group a well-defined quasi-isometry type) and those surfaces with mapping class groups of bounded diameter (the analog of compactness).

We also show several relationships between the topology of a surface and the geometry of its mapping class groups. For instance, we show that nondisplaceable subsurfaces are responsible for nontrivial geometry and can be used to produce unbounded length functions on mapping class groups using a version of subsurface projection; while self-similarity of the space of ends of a surface is responsible for boundedness of the mapping class group.

DOI : 10.2140/gt.2023.27.2237
Keywords: big mapping class group, CB generating set, coarsely bounded sets

Mann, Kathryn 1 ; Rafi, Kasra 2

1 Department of Mathematics, Cornell University, Ithaca, NY, United States
2 Department of Mathematics, University of Toronto, Toronto, ON, Canada
@article{GT_2023_27_6_a2,
     author = {Mann, Kathryn and Rafi, Kasra},
     title = {Large-scale geometry of big mapping class groups},
     journal = {Geometry & topology},
     pages = {2237--2296},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2023},
     doi = {10.2140/gt.2023.27.2237},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2237/}
}
TY  - JOUR
AU  - Mann, Kathryn
AU  - Rafi, Kasra
TI  - Large-scale geometry of big mapping class groups
JO  - Geometry & topology
PY  - 2023
SP  - 2237
EP  - 2296
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2237/
DO  - 10.2140/gt.2023.27.2237
ID  - GT_2023_27_6_a2
ER  - 
%0 Journal Article
%A Mann, Kathryn
%A Rafi, Kasra
%T Large-scale geometry of big mapping class groups
%J Geometry & topology
%D 2023
%P 2237-2296
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2237/
%R 10.2140/gt.2023.27.2237
%F GT_2023_27_6_a2
Mann, Kathryn; Rafi, Kasra. Large-scale geometry of big mapping class groups. Geometry & topology, Tome 27 (2023) no. 6, pp. 2237-2296. doi : 10.2140/gt.2023.27.2237. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2237/

[1] J Aramayona, A Fossas, H Parlier, Arc and curve graphs for infinite-type surfaces, Proc. Amer. Math. Soc. 145 (2017) 4995 | DOI

[2] J Aramayona, P Patel, N G Vlamis, The first integral cohomology of pure mapping class groups, Int. Math. Res. Not. 2020 (2020) 8973 | DOI

[3] J Bavard, Hyperbolicité du graphe des rayons et quasi-morphismes sur un gros groupe modulaire, Geom. Topol. 20 (2016) 491 | DOI

[4] J Bavard, S Dowdall, K Rafi, Isomorphisms between big mapping class groups, Int. Math. Res. Not. 2020 (2020) 3084 | DOI

[5] R Camerlo, S Gao, The completeness of the isomorphism relation for countable Boolean algebras, Trans. Amer. Math. Soc. 353 (2001) 491 | DOI

[6] R Chamanara, Affine automorphism groups of surfaces of infinite type, from: "In the tradition of Ahlfors and Bers, III" (editors W Abikoff, A Haas), Contemp. Math. 355, Amer. Math. Soc. (2004) 123 | DOI

[7] M G Durham, F Fanoni, N G Vlamis, Graphs of curves on infinite-type surfaces with mapping class group actions, Ann. Inst. Fourier (Grenoble) 68 (2018) 2581 | DOI

[8] F Fanoni, S Hensel, N G Vlamis, Big mapping class groups acting on homology, Indiana Univ. Math. J. 70 (2021) 2261 | DOI

[9] W P Hooper, Grid graphs and lattice surfaces, Int. Math. Res. Not. 2013 (2013) 2657 | DOI

[10] J Ketonen, The structure of countable Boolean algebras, Ann. of Math. 108 (1978) 41 | DOI

[11] H A Masur, Y N Minsky, Geometry of the complex of curves, I : Hyperbolicity, Invent. Math. 138 (1999) 103 | DOI

[12] H A Masur, Y N Minsky, Geometry of the complex of curves, II : Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902 | DOI

[13] S Mazurkiewicz, W Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920) 17 | DOI

[14] P Patel, N G Vlamis, Algebraic and topological properties of big mapping class groups, Algebr. Geom. Topol. 18 (2018) 4109 | DOI

[15] A Randecker, Wild translation surfaces and infinite genus, Algebr. Geom. Topol. 18 (2018) 2661 | DOI

[16] I Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963) 259 | DOI

[17] C Rosendal, Global and local boundedness of Polish groups, Indiana Univ. Math. J. 62 (2013) 1621 | DOI

[18] C Rosendal, Coarse geometry of topological groups, 223, Cambridge Univ. Press (2021) | DOI

[19] S Schleimer, Notes on the complex of curves, lecture notes (2020)

Cité par Sources :