We define an invariant of contact structures in dimension three from Heegaard Floer homology. This invariant takes values in the set ℤ≥0 ∪{∞}. It is zero for overtwisted contact structures, ∞ for Stein-fillable contact structures, nondecreasing under Legendrian surgery, and computable from any supporting open book decomposition. As an application, we give an easily computable obstruction to Stein-fillability on closed contact 3–manifolds with nonvanishing Ozsváth–Szabó contact class.
Keywords: Heegaard Floer homology, contact structure
Kutluhan, Çağatay 1 ; Matić, Gordana 2 ; Van Horn-Morris, Jeremy 3 ; Wand, Andy 4
@article{10_2140_gt_2023_27_2181,
author = {Kutluhan, \c{C}a\u{g}atay and Mati\'c, Gordana and Van Horn-Morris, Jeremy and Wand, Andy},
title = {Filtering the {Heegaard} {Floer} contact invariant},
journal = {Geometry & topology},
pages = {2181--2236},
year = {2023},
volume = {27},
number = {6},
doi = {10.2140/gt.2023.27.2181},
url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2181/}
}
TY - JOUR AU - Kutluhan, Çağatay AU - Matić, Gordana AU - Van Horn-Morris, Jeremy AU - Wand, Andy TI - Filtering the Heegaard Floer contact invariant JO - Geometry & topology PY - 2023 SP - 2181 EP - 2236 VL - 27 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2181/ DO - 10.2140/gt.2023.27.2181 ID - 10_2140_gt_2023_27_2181 ER -
%0 Journal Article %A Kutluhan, Çağatay %A Matić, Gordana %A Van Horn-Morris, Jeremy %A Wand, Andy %T Filtering the Heegaard Floer contact invariant %J Geometry & topology %D 2023 %P 2181-2236 %V 27 %N 6 %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2181/ %R 10.2140/gt.2023.27.2181 %F 10_2140_gt_2023_27_2181
Kutluhan, Çağatay; Matić, Gordana; Van Horn-Morris, Jeremy; Wand, Andy. Filtering the Heegaard Floer contact invariant. Geometry & topology, Tome 27 (2023) no. 6, pp. 2181-2236. doi: 10.2140/gt.2023.27.2181
[1] , , , Cabling, contact structures and mapping class monoids, J. Differential Geom. 90 (2012) 1
[2] , Heegaard Floer homology and genus one, one-boundary component open books, J. Topol. 1 (2008) 963 | DOI
[3] , Contact monoids and Stein cobordisms, Math. Res. Lett. 19 (2012) 31 | DOI
[4] , , A note on the knot Floer homology of fibered knots, Algebr. Geom. Topol. 18 (2018) 3669 | DOI
[5] , , Definition of cylindrical contact homology in dimension three, J. Topol. 11 (2018) 1002 | DOI
[6] , Exactly fillable contact structures without Stein fillings, Algebr. Geom. Topol. 12 (2012) 1803 | DOI
[7] , , From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI
[8] , Chirurgies d’indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 659 | DOI
[9] , Transverse surgery on knots in contact 3–manifolds, Trans. Amer. Math. Soc. 372 (2019) 1671 | DOI
[10] , , , Symplectic fillings, contact surgeries, and Lagrangian disks, Int. Math. Res. Not. 2021 (2021) 6020 | DOI
[11] , Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, II" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45 | DOI
[12] , Unique holomorphically fillable contact structure on the 3–torus, Int. Math. Res. Not. 1996 (1996) 77 | DOI
[13] , , Monoids in the mapping class group, from: "Interactions between low-dimensional topology and mapping class groups" (editors R I Baykur, J Etnyre, U Hamenstädt), Geom. Topol. Monogr. 19, Geom. Topol. Publ. (2015) 319 | DOI
[14] , Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006) 1749 | DOI
[15] , Strongly fillable contact 3–manifolds without Stein fillings, Geom. Topol. 9 (2005) 1677 | DOI
[16] , Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615 | DOI
[17] , Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. (2002) 405
[18] , Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI
[19] , , Dehn surgery, rational open books and knot Floer homology, Algebr. Geom. Topol. 13 (2013) 1815 | DOI
[20] , On the classification of tight contact structures, II, J. Differential Geom. 55 (2000) 83
[21] , , , Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427 | DOI
[22] , , , The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 | DOI
[23] , , , On the contact class in Heegaard Floer homology, J. Differential Geom. 83 (2009) 289
[24] , The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263 | DOI
[25] , , Cylindrical contact homology for dynamically convex contact forms in three dimensions, J. Symplectic Geom. 14 (2016) 983 | DOI
[26] , , Spectral order for contact manifolds with convex boundary, Algebr. Geom. Topol. 18 (2018) 3315 | DOI
[27] , Stein fillings of planar open books, preprint (2013)
[28] , , Hyperbolic rational homology spheres not admitting fillable contact structures, Math. Res. Lett. 24 (2017) 1693 | DOI
[29] , , Monopoles and contact structures, Invent. Math. 130 (1997) 209 | DOI
[30] , , , , Spectral order for sutured contact manifolds, in preparation
[31] , , , , Spectral order is a non-trivial contact invariant, in preparation
[32] , , , , A Heegaard Floer analog of algebraic torsion, from: "Breadth in contemporary topology" (editors D T Gay, W Wu), Proc. Sympos. Pure Math. 102, Amer. Math. Soc. (2019) 119 | DOI
[33] , , Algebraic torsion in contact manifolds, Geom. Funct. Anal. 21 (2011) 1144 | DOI
[34] , , Hyperbolic 3–manifolds admitting no fillable contact structures, Proc. Amer. Math. Soc. 147 (2019) 351 | DOI
[35] , A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955 | DOI
[36] , Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998) 103 | DOI
[37] , On lens spaces and their symplectic fillings, Math. Res. Lett. 11 (2004) 13 | DOI
[38] , , Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509 | DOI
[39] , , Tight, not semi-fillable contact circle bundles, Math. Ann. 328 (2004) 285 | DOI
[40] , , Ozsváth–Szabó invariants and tight contact 3–manifolds, III, J. Symplectic Geom. 5 (2007) 357 | DOI
[41] , , Spine removal surgery and the geography of symplectic fillings, Michigan Math. J. 70 (2021) 403 | DOI
[42] , The structure of rational and ruled symplectic 4–manifolds, J. Amer. Math. Soc. 3 (1990) 679 | DOI
[43] , , , Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685 | DOI
[44] , Eta invariants of Dirac operators on circle bundles over Riemann surfaces and virtual dimensions of finite energy Seiberg–Witten moduli spaces, Israel J. Math. 114 (1999) 61 | DOI
[45] , , Weak symplectic fillings and holomorphic curves, Ann. Sci. Éc. Norm. Supér. 44 (2011) 801 | DOI
[46] , Fredholm theory of holomorphic discs under the perturbation of boundary conditions, Math. Z. 222 (1996) 505 | DOI
[47] , , Dehn surgeries and negative-definite four-manifolds, Selecta Math. 18 (2012) 839 | DOI
[48] , , Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI
[49] , , Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI
[50] , , Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 | DOI
[51] , Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825 | DOI
[52] , A combinatorial description of the Heegaard Floer contact invariant, Algebr. Geom. Topol. 7 (2007) 1201 | DOI
[53] , tau-invariants for knots in rational homology spheres, PhD thesis, Brandeis University (2017)
[54] , , An algorithm for computing some Heegaard Floer homologies, Ann. of Math. 171 (2010) 1213 | DOI
[55] , Detecting tightness via open book decompositions, from: "Interactions between low-dimensional topology and mapping class groups" (editors R I Baykur, J Etnyre, U Hamenstädt), Geom. Topol. Monogr. 19, Geom. Topol. Publ. (2015) 291 | DOI
[56] , Tightness is preserved by Legendrian surgery, Ann. of Math. 182 (2015) 723 | DOI
[57] , Strongly fillable contact manifolds and J–holomorphic foliations, Duke Math. J. 151 (2010) 337 | DOI
[58] , A hierarchy of local symplectic filling obstructions for contact 3–manifolds, Duke Math. J. 162 (2013) 2197 | DOI
Cité par Sources :