Filtering the Heegaard Floer contact invariant
Geometry & topology, Tome 27 (2023) no. 6, pp. 2181-2236 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We define an invariant of contact structures in dimension three from Heegaard Floer homology. This invariant takes values in the set ℤ≥0 ∪{∞}. It is zero for overtwisted contact structures, ∞ for Stein-fillable contact structures, nondecreasing under Legendrian surgery, and computable from any supporting open book decomposition. As an application, we give an easily computable obstruction to Stein-fillability on closed contact 3–manifolds with nonvanishing Ozsváth–Szabó contact class.

DOI : 10.2140/gt.2023.27.2181
Classification : 57R17, 57R58
Keywords: Heegaard Floer homology, contact structure

Kutluhan, Çağatay 1 ; Matić, Gordana 2 ; Van Horn-Morris, Jeremy 3 ; Wand, Andy 4

1 Department of Mathematics, University at Buffalo, Buffalo, NY, United States
2 Department of Mathematics, University of Georgia, Athens, GA, United States
3 Department of Mathematics, University of Arkansas, Fayetteville, AR, United States
4 School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
@article{10_2140_gt_2023_27_2181,
     author = {Kutluhan, \c{C}a\u{g}atay and Mati\'c, Gordana and Van Horn-Morris, Jeremy and Wand, Andy},
     title = {Filtering the {Heegaard} {Floer} contact invariant},
     journal = {Geometry & topology},
     pages = {2181--2236},
     year = {2023},
     volume = {27},
     number = {6},
     doi = {10.2140/gt.2023.27.2181},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2181/}
}
TY  - JOUR
AU  - Kutluhan, Çağatay
AU  - Matić, Gordana
AU  - Van Horn-Morris, Jeremy
AU  - Wand, Andy
TI  - Filtering the Heegaard Floer contact invariant
JO  - Geometry & topology
PY  - 2023
SP  - 2181
EP  - 2236
VL  - 27
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2181/
DO  - 10.2140/gt.2023.27.2181
ID  - 10_2140_gt_2023_27_2181
ER  - 
%0 Journal Article
%A Kutluhan, Çağatay
%A Matić, Gordana
%A Van Horn-Morris, Jeremy
%A Wand, Andy
%T Filtering the Heegaard Floer contact invariant
%J Geometry & topology
%D 2023
%P 2181-2236
%V 27
%N 6
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2181/
%R 10.2140/gt.2023.27.2181
%F 10_2140_gt_2023_27_2181
Kutluhan, Çağatay; Matić, Gordana; Van Horn-Morris, Jeremy; Wand, Andy. Filtering the Heegaard Floer contact invariant. Geometry & topology, Tome 27 (2023) no. 6, pp. 2181-2236. doi: 10.2140/gt.2023.27.2181

[1] K L Baker, J B Etnyre, J Van Horn-Morris, Cabling, contact structures and mapping class monoids, J. Differential Geom. 90 (2012) 1

[2] J A Baldwin, Heegaard Floer homology and genus one, one-boundary component open books, J. Topol. 1 (2008) 963 | DOI

[3] J A Baldwin, Contact monoids and Stein cobordisms, Math. Res. Lett. 19 (2012) 31 | DOI

[4] J Baldwin, D S Vela-Vick, A note on the knot Floer homology of fibered knots, Algebr. Geom. Topol. 18 (2018) 3669 | DOI

[5] E Bao, K Honda, Definition of cylindrical contact homology in dimension three, J. Topol. 11 (2018) 1002 | DOI

[6] J Bowden, Exactly fillable contact structures without Stein fillings, Algebr. Geom. Topol. 12 (2012) 1803 | DOI

[7] K Cieliebak, Y Eliashberg, From Stein to Weinstein and back : symplectic geometry of affine complex manifolds, 59, Amer. Math. Soc. (2012) | DOI

[8] V Colin, Chirurgies d’indice un et isotopies de sphères dans les variétés de contact tendues, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 659 | DOI

[9] J Conway, Transverse surgery on knots in contact 3–manifolds, Trans. Amer. Math. Soc. 372 (2019) 1671 | DOI

[10] J Conway, J B Etnyre, B Tosun, Symplectic fillings, contact surgeries, and Lagrangian disks, Int. Math. Res. Not. 2021 (2021) 6020 | DOI

[11] Y Eliashberg, Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, II" (editors S K Donaldson, C B Thomas), London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45 | DOI

[12] Y Eliashberg, Unique holomorphically fillable contact structure on the 3–torus, Int. Math. Res. Not. 1996 (1996) 77 | DOI

[13] J B Etnyre, J Van Horn-Morris, Monoids in the mapping class group, from: "Interactions between low-dimensional topology and mapping class groups" (editors R I Baykur, J Etnyre, U Hamenstädt), Geom. Topol. Monogr. 19, Geom. Topol. Publ. (2015) 319 | DOI

[14] D T Gay, Four-dimensional symplectic cobordisms containing three-handles, Geom. Topol. 10 (2006) 1749 | DOI

[15] P Ghiggini, Strongly fillable contact 3–manifolds without Stein fillings, Geom. Topol. 9 (2005) 1677 | DOI

[16] E Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Invent. Math. 141 (2000) 615 | DOI

[17] E Giroux, Géométrie de contact : de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, II" (editor T Li), Higher Ed. (2002) 405

[18] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 | DOI

[19] M Hedden, O Plamenevskaya, Dehn surgery, rational open books and knot Floer homology, Algebr. Geom. Topol. 13 (2013) 1815 | DOI

[20] K Honda, On the classification of tight contact structures, II, J. Differential Geom. 55 (2000) 83

[21] K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427 | DOI

[22] K Honda, W H Kazez, G Matić, The contact invariant in sutured Floer homology, Invent. Math. 176 (2009) 637 | DOI

[23] K Honda, W H Kazez, G Matić, On the contact class in Heegaard Floer homology, J. Differential Geom. 83 (2009) 289

[24] M Hutchings, The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263 | DOI

[25] M Hutchings, J Nelson, Cylindrical contact homology for dynamically convex contact forms in three dimensions, J. Symplectic Geom. 14 (2016) 983 | DOI

[26] A Juhász, S Kang, Spectral order for contact manifolds with convex boundary, Algebr. Geom. Topol. 18 (2018) 3315 | DOI

[27] A Kaloti, Stein fillings of planar open books, preprint (2013)

[28] A Kaloti, B Tosun, Hyperbolic rational homology spheres not admitting fillable contact structures, Math. Res. Lett. 24 (2017) 1693 | DOI

[29] P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209 | DOI

[30] Ç Kutluhan, G Matić, J V Horn-Morris, A Wand, Spectral order for sutured contact manifolds, in preparation

[31] Ç Kutluhan, G Matić, J V Horn-Morris, A Wand, Spectral order is a non-trivial contact invariant, in preparation

[32] Ç Kutluhan, G Matić, J Van Horn-Morris, A Wand, A Heegaard Floer analog of algebraic torsion, from: "Breadth in contemporary topology" (editors D T Gay, W Wu), Proc. Sympos. Pure Math. 102, Amer. Math. Soc. (2019) 119 | DOI

[33] J Latschev, C Wendl, Algebraic torsion in contact manifolds, Geom. Funct. Anal. 21 (2011) 1144 | DOI

[34] Y Li, Y Liu, Hyperbolic 3–manifolds admitting no fillable contact structures, Proc. Amer. Math. Soc. 147 (2019) 351 | DOI

[35] R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955 | DOI

[36] P Lisca, Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998) 103 | DOI

[37] P Lisca, On lens spaces and their symplectic fillings, Math. Res. Lett. 11 (2004) 13 | DOI

[38] P Lisca, G Matić, Tight contact structures and Seiberg–Witten invariants, Invent. Math. 129 (1997) 509 | DOI

[39] P Lisca, A I Stipsicz, Tight, not semi-fillable contact circle bundles, Math. Ann. 328 (2004) 285 | DOI

[40] P Lisca, A I Stipsicz, Ozsváth–Szabó invariants and tight contact 3–manifolds, III, J. Symplectic Geom. 5 (2007) 357 | DOI

[41] S Lisi, C Wendl, Spine removal surgery and the geography of symplectic fillings, Michigan Math. J. 70 (2021) 403 | DOI

[42] D Mcduff, The structure of rational and ruled symplectic 4–manifolds, J. Amer. Math. Soc. 3 (1990) 679 | DOI

[43] T Mrowka, P Ozsváth, B Yu, Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685 | DOI

[44] L I Nicolaescu, Eta invariants of Dirac operators on circle bundles over Riemann surfaces and virtual dimensions of finite energy Seiberg–Witten moduli spaces, Israel J. Math. 114 (1999) 61 | DOI

[45] K Niederkrüger, C Wendl, Weak symplectic fillings and holomorphic curves, Ann. Sci. Éc. Norm. Supér. 44 (2011) 801 | DOI

[46] Y G Oh, Fredholm theory of holomorphic discs under the perturbation of boundary conditions, Math. Z. 222 (1996) 505 | DOI

[47] B Owens, S Strle, Dehn surgeries and negative-definite four-manifolds, Selecta Math. 18 (2012) 839 | DOI

[48] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 | DOI

[49] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. 159 (2004) 1159 | DOI

[50] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39 | DOI

[51] J Pardon, Contact homology and virtual fundamental cycles, J. Amer. Math. Soc. 32 (2019) 825 | DOI

[52] O Plamenevskaya, A combinatorial description of the Heegaard Floer contact invariant, Algebr. Geom. Topol. 7 (2007) 1201 | DOI

[53] K Raoux, tau-invariants for knots in rational homology spheres, PhD thesis, Brandeis University (2017)

[54] S Sarkar, J Wang, An algorithm for computing some Heegaard Floer homologies, Ann. of Math. 171 (2010) 1213 | DOI

[55] A Wand, Detecting tightness via open book decompositions, from: "Interactions between low-dimensional topology and mapping class groups" (editors R I Baykur, J Etnyre, U Hamenstädt), Geom. Topol. Monogr. 19, Geom. Topol. Publ. (2015) 291 | DOI

[56] A Wand, Tightness is preserved by Legendrian surgery, Ann. of Math. 182 (2015) 723 | DOI

[57] C Wendl, Strongly fillable contact manifolds and J–holomorphic foliations, Duke Math. J. 151 (2010) 337 | DOI

[58] C Wendl, A hierarchy of local symplectic filling obstructions for contact 3–manifolds, Duke Math. J. 162 (2013) 2197 | DOI

Cité par Sources :