Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Consider a pair of a Weinstein manifold with an exact Lagrangian submanifold , with ideal contact boundary , where is a contact manifold and is a Legendrian submanifold. We introduce the Chekanov–Eliashberg DG–algebra, , with coefficients in chains of the based loop space of , and study its relation to the Floer cohomology of . Using the augmentation induced by , can be expressed as the Adams cobar construction applied to a Legendrian coalgebra, . We define a twisting cochain via holomorphic curve counts, where denotes the bar construction and the graded linear dual. We show under simple-connectedness assumptions that the corresponding Koszul complex is acyclic, which then implies that and are Koszul dual. In particular, induces a quasi-isomorphism between and , the cobar of the Floer homology of .
This generalizes the classical Koszul duality result between and for a simply connected manifold, where is the based loop space of , and provides the geometric ingredient explaining the computations given by Etgü and Lekili (2017) in the case when is a plumbing of cotangent bundles of –spheres (where an additional weight grading ensured Koszulity of ).
We use the duality result to show that under certain connectivity and local-finiteness assumptions, is quasi-isomorphic to for any Lagrangian filling of .
Our constructions have interpretations in terms of wrapped Floer cohomology after versions of Lagrangian handle attachments. In particular, we outline a proof that is quasi-isomorphic to the wrapped Floer cohomology of a fiber disk in the Weinstein domain obtained by attaching to along (or, in the terminology of Sylvan (2019), the wrapped Floer cohomology of in with wrapping stopped by ). Along the way, we give a definition of wrapped Floer cohomology via holomorphic buildings that avoids the use of Hamiltonian perturbations, which might be of independent interest.
Ekholm, Tobias 1 ; Lekili, Yankı 2
@article{GT_2023_27_6_a0, author = {Ekholm, Tobias and Lekili, Yank{\i}}, title = {Duality between {Lagrangian} and {Legendrian} invariants}, journal = {Geometry & topology}, pages = {2049--2179}, publisher = {mathdoc}, volume = {27}, number = {6}, year = {2023}, doi = {10.2140/gt.2023.27.2049}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2049/} }
TY - JOUR AU - Ekholm, Tobias AU - Lekili, Yankı TI - Duality between Lagrangian and Legendrian invariants JO - Geometry & topology PY - 2023 SP - 2049 EP - 2179 VL - 27 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2049/ DO - 10.2140/gt.2023.27.2049 ID - GT_2023_27_6_a0 ER -
Ekholm, Tobias; Lekili, Yankı. Duality between Lagrangian and Legendrian invariants. Geometry & topology, Tome 27 (2023) no. 6, pp. 2049-2179. doi : 10.2140/gt.2023.27.2049. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.2049/
[1] Morse homology, tropical geometry, and homological mirror symmetry for toric varieties, Selecta Math. 15 (2009) 189 | DOI
,[2] On the wrapped Fukaya category and based loops, J. Symplectic Geom. 10 (2012) 27 | DOI
,[3] An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 | DOI
, ,[4] On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 409 | DOI
,[5] On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956) 305 | DOI
, ,[6] Topological strings, D–model, and knot contact homology, Adv. Theor. Math. Phys. 18 (2014) 827 | DOI
, , , ,[7] Lagrangian intersections and the Serre spectral sequence, Ann. of Math. 166 (2007) 657 | DOI
, ,[8] Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996) 473 | DOI
, , ,[9] Conditionally convergent spectral sequences, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 49 | DOI
,[10] Bilinearized Legendrian contact homology and the augmentation category, J. Symplectic Geom. 12 (2014) 553 | DOI
, ,[11] Effect of Legendrian surgery, Geom. Topol. 16 (2012) 301 | DOI
, , ,[12] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 | DOI
, , , , ,[13] Twisted tensor products, I, Ann. of Math. 69 (1959) 223 | DOI
,[14] Stable homotopy and iterated loop spaces, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 505 | DOI
, ,[15] Legendrian fronts for affine varieties, Duke Math. J. 168 (2019) 225 | DOI
, ,[16] Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831 | DOI
,[17] Compactness for holomorphic curves with switching Lagrangian boundary conditions, J. Symplectic Geom. 8 (2010) 267 | DOI
, , ,[18] Flexible Weinstein manifolds, from: "Symplectic, Poisson, and noncommutative geometry" (editors T Eguchi, Y Eliashberg), Math. Sci. Res. Inst. Publ. 62, Cambridge Univ. Press (2014) 1
, ,[19] The role of string topology in symplectic field theory, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 113 | DOI
, ,[20] Product structures for Legendrian contact homology, Math. Proc. Cambridge Philos. Soc. 150 (2011) 291 | DOI
, , , , ,[21] Limits and spectral sequences, Topology 1 (1962) 1 | DOI
, ,[22] Morse flow trees and Legendrian contact homology in 1–jet spaces, Geom. Topol. 11 (2007) 1083 | DOI
,[23] Rational symplectic field theory over Z2 for exact Lagrangian cobordisms, J. Eur. Math. Soc. 10 (2008) 641 | DOI
,[24] A version of rational SFT for exact Lagrangian cobordisms in 1–jet spaces, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 173 | DOI
,[25] Holomorphic curves for Legendrian surgery, preprint (2019)
,[26] Knot contact homology, Geom. Topol. 17 (2013) 975 | DOI
, , , ,[27] Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005) 453 | DOI
, , ,[28] Legendrian contact homology in P × R, Trans. Amer. Math. Soc. 359 (2007) 3301 | DOI
, , ,[29] Legendrian knots and exact Lagrangian cobordisms, J. Eur. Math. Soc. JEMS 18 (2016) 2627 | DOI
, , ,[30] Symplectic and contact differential graded algebras, Geom. Topol. 21 (2017) 2161 | DOI
, ,[31] Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014) 195 | DOI
, ,[32] Koszul duality patterns in Floer theory, Geom. Topol. 21 (2017) 3313 | DOI
, ,[33] Extended Adams–Hilton’s construction, Pacific J. Math. 128 (1987) 251 | DOI
, ,[34] Application of Floer homology of Langrangian submanifolds to symplectic topology, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 231 | DOI
,[35] Zero-loop open strings in the cotangent bundle and Morse homotopy, Asian J. Math. 1 (1997) 96 | DOI
, ,[36] Lagrangian intersection Floer theory : anomaly and obstruction, I, 46, Amer. Math. Soc. (2009) | DOI
, , , ,[37] Simplicial homotopy theory, 174, Birkhäuser (1999) | DOI
, ,[38] Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI
,[39] Hochschild (co)homology and Koszul duality, preprint (2014)
,[40] Morita cohomology, PhD thesis, University of Cambridge (2014)
,[41] Morita cohomology, Math. Proc. Cambridge Philos. Soc. 158 (2015) 1 | DOI
,[42] Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403 | DOI
,[43] Relative singularity categories, I : Auslander resolutions, Adv. Math. 301 (2016) 973 | DOI
, ,[44] Abstract homotopy, IV, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 542 | DOI
,[45] Deriving DG categories, Ann. Sci. École Norm. Sup. 27 (1994) 63 | DOI
,[46] Symplectic geometry of homological algebra, preprint (2009)
,[47] Sur les A∞–catègories, PhD thesis, Université Paris 7 (2003)
,[48] Arithmetic mirror symmetry for genus 1 curves with n marked points, Selecta Math. 23 (2017) 1851 | DOI
, ,[49] Algebraic operads, 346, Springer (2012) | DOI
, ,[50] Koszul equivalences in A∞–algebras, New York J. Math. 14 (2008) 325
, , , ,[51] User’s guide to spectral sequences, 12, Publish or Perish (1985)
,[52] Morse theory, 51, Princeton Univ. Press (1963)
,[53] Wrapped microlocal sheaves on pairs of pants, preprint (2016)
,[54] What is loop multiplication anyhow?, J. Homotopy Relat. Struct. 12 (2017) 659 | DOI
,[55] Augmentations are sheaves, Geom. Topol. 24 (2020) 2149 | DOI
, , , , ,[56] Two kinds of derived categories, Koszul duality, and comodule–contramodule correspondence, 996, Amer. Math. Soc. (2011) | DOI
,[57] A∞–structures : modèles minimaux de Baues–Lemaire et Kadeishvili et homologie des fibrations, Repr. Theory Appl. Categ. (2011) 1
,[58] Equivalences of monoidal model categories, Algebr. Geom. Topol. 3 (2003) 287 | DOI
, ,[59] Fukaya categories and Picard–Lefschetz theory, Eur. Math. Soc. (2008) | DOI
,[60] Homologie singulière des espaces fibrés : applications, Ann. of Math. 54 (1951) 425 | DOI
,[61] Partially wrapped Floer theory, talk (2016)
,[62] On partially wrapped Fukaya categories, J. Topol. 12 (2019) 372 | DOI
,[63] Theorie homotopique des DG–categories, preprint (2007)
,[64] An introduction to homological algebra, 38, Cambridge Univ. Press (1994) | DOI
,Cité par Sources :