Isotopy of the Dehn twist on K3 # K3 after a single stabilization
Geometry & topology, Tome 27 (2023) no. 5, pp. 1987-2012.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Kronheimer and Mrowka recently proved that the Dehn twist along a 3–sphere in the neck of K3 # K3 is not smoothly isotopic to the identity. This provides a new example of self-diffeomorphisms on 4–manifolds that are isotopic to the identity in the topological category but not smoothly so. (The first such examples were given by Ruberman.) We use the Pin(2)–equivariant Bauer–Furuta invariant to show that this Dehn twist is not smoothly isotopic to the identity even after a single stabilization (connected summing with the identity map on S2 × S2). This gives the first example of exotic phenomena on simply connected smooth 4–manifolds that do not disappear after a single stabilization.

DOI : 10.2140/gt.2023.27.1987
Keywords: 4–manifolds, Bauer–Furuta invariant, exotic phenomena, stabilization

Lin, Jianfeng 1

1 Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
@article{GT_2023_27_5_a6,
     author = {Lin, Jianfeng},
     title = {Isotopy of the {Dehn} twist on {K3} # {K3} after a single stabilization},
     journal = {Geometry & topology},
     pages = {1987--2012},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2023},
     doi = {10.2140/gt.2023.27.1987},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1987/}
}
TY  - JOUR
AU  - Lin, Jianfeng
TI  - Isotopy of the Dehn twist on K3 # K3 after a single stabilization
JO  - Geometry & topology
PY  - 2023
SP  - 1987
EP  - 2012
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1987/
DO  - 10.2140/gt.2023.27.1987
ID  - GT_2023_27_5_a6
ER  - 
%0 Journal Article
%A Lin, Jianfeng
%T Isotopy of the Dehn twist on K3 # K3 after a single stabilization
%J Geometry & topology
%D 2023
%P 1987-2012
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1987/
%R 10.2140/gt.2023.27.1987
%F GT_2023_27_5_a6
Lin, Jianfeng. Isotopy of the Dehn twist on K3 # K3 after a single stabilization. Geometry & topology, Tome 27 (2023) no. 5, pp. 1987-2012. doi : 10.2140/gt.2023.27.1987. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1987/

[1] J F Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, from: "Algebraic topology" (editors I Madsen, B Oliver), Lecture Notes in Math. 1051, Springer (1984) 483 | DOI

[2] S Akbulut, A fake 4–manifold, from: "Four-manifold theory" (editors C Gordon, R Kirby), Contemp. Math. 35, Amer. Math. Soc. (1984) 75 | DOI

[3] S Akbulut, Isotoping 2–spheres in 4–manifolds, from: "Proceedings of the Gökova Geometry–Topology Conference 2014" (editors S Akbulut, D Auroux, T Önder), GGT (2015) 264

[4] S Akbulut, T Mrowka, Y Ruan, Torsion classes and a universal constraint on Donaldson invariants for odd manifolds, Trans. Amer. Math. Soc. 347 (1995) 63 | DOI

[5] D Auckly, H J Kim, P Melvin, D Ruberman, Stable isotopy in four dimensions, J. Lond. Math. Soc. 91 (2015) 439 | DOI

[6] D Auckly, H J Kim, P Melvin, D Ruberman, H Schwartz, Isotopy of surfaces in 4–manifolds after a single stabilization, Adv. Math. 341 (2019) 609 | DOI

[7] D Baraglia, Constraints on families of smooth 4–manifolds from Bauer–Furuta invariants, Algebr. Geom. Topol. 21 (2021) 317 | DOI

[8] D Baraglia, H Konno, A gluing formula for families Seiberg–Witten invariants, Geom. Topol. 24 (2020) 1381 | DOI

[9] D Baraglia, H Konno, On the Bauer–Furuta and Seiberg–Witten invariants of families of 4–manifolds, J. Topol. 15 (2022) 505 | DOI

[10] S Bauer, A stable cohomotopy refinement of Seiberg–Witten invariants, II, Invent. Math. 155 (2004) 21 | DOI

[11] S Bauer, M Furuta, A stable cohomotopy refinement of Seiberg–Witten invariants, I, Invent. Math. 155 (2004) 1 | DOI

[12] R İ Baykur, N Sunukjian, Round handles, logarithmic transforms and smooth 4–manifolds, J. Topol. 6 (2013) 49 | DOI

[13] S E Cappell, J L Shaneson, Some new four-manifolds, Ann. of Math. 104 (1976) 61 | DOI

[14] T Tom Dieck, Transformation groups and representation theory, 766, Springer (1979) | DOI

[15] T Tom Dieck, Transformation groups, 8, de Gruyter (1987) | DOI

[16] S K Donaldson, Irrationality and the h–cobordism conjecture, J. Differential Geom. 26 (1987) 141

[17] S K Donaldson, The orientation of Yang–Mills moduli spaces and 4–manifold topology, J. Differential Geom. 26 (1987) 397

[18] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990)

[19] R Fintushel, R J Stern, 2–Torsion instanton invariants, J. Amer. Math. Soc. 6 (1993) 299 | DOI

[20] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[21] M Furuta, Monopole equation and the –conjecture, Math. Res. Lett. 8 (2001) 279 | DOI

[22] R E Gompf, Stable diffeomorphism of compact 4–manifolds, Topology Appl. 18 (1984) 115 | DOI

[23] M Kreck, Isotopy classes of diffeomorphisms of (k−1)–connected almost-parallelizable 2k–manifolds, from: "Algebraic topology" (editors J L Dupont, I H Madsen), Lecture Notes in Math. 763, Springer (1979) 643 | DOI

[24] M Kreck, Some closed 4–manifolds with exotic differentiable structure, from: "Algebraic topology" (editors I Madsen, B Oliver), Lecture Notes in Math. 1051, Springer (1984) 246 | DOI

[25] M Kreck, Surgery and duality, Ann. of Math. 149 (1999) 707 | DOI

[26] P B Kronheimer, T S Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004) 741 | DOI

[27] N H Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965) 19 | DOI

[28] L G Lewis Jr., J P May, M Steinberger, J E Mcclure, Equivariant stable homotopy theory, 1213, Springer (1986) | DOI

[29] J Lin, A Mukherjee, Family Bauer–Furuta invariant, exotic surfaces and Smale conjecture, preprint (2021)

[30] J P May, Equivariant homotopy and cohomology theory, 91, Amer. Math. Soc. (1996) | DOI

[31] B Perron, Pseudo-isotopies et isotopies en dimension quatre dans la catégorie topologique, Topology 25 (1986) 381 | DOI

[32] F Quinn, Isotopy of 4–manifolds, J. Differential Geom. 24 (1986) 343

[33] D Ruberman, An obstruction to smooth isotopy in dimension 4, Math. Res. Lett. 5 (1998) 743 | DOI

[34] S Schwede, Lectures on equivariant stable homotopy theory, preprint (2014)

[35] M Szymik, Characteristic cohomotopy classes for families of 4–manifolds, Forum Math. 22 (2010) 509 | DOI

[36] C T C Wall, Diffeomorphisms of 4–manifolds, J. London Math. Soc. 39 (1964) 131 | DOI

[37] C T C Wall, On simply-connected 4–manifolds, J. London Math. Soc. 39 (1964) 141 | DOI

[38] M Xu, The Bauer–Furuta invariant and a cohomotopy refined Ruberman invariant, PhD thesis, Stony Brook University (2004)

Cité par Sources :