Chern characters for supersymmetric field theories
Geometry & topology, Tome 27 (2023) no. 5, pp. 1947-1986 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We construct a map from d|1–dimensional Euclidean field theories to complexified K–theory when d = 1 and complex-analytic elliptic cohomology when d = 2. This provides further evidence for the Stolz–Teichner program, while also identifying candidate geometric models for Chern characters within their framework. The construction arises as a higher-dimensional and parametrized generalization of Fei Han’s realization of the Chern character in K–theory as dimensional reduction for 1|1–dimensional Euclidean field theories. In the elliptic case, the main new feature is a subtle interplay between the geometry of the super moduli space of 2|1–dimensional tori and the derived geometry of complex-analytic elliptic cohomology. As a corollary, we obtain an entirely geometric proof that partition functions of 𝒩 = (0,1) supersymmetric quantum field theories are weak modular forms, following a suggestion of Stolz and Teichner.

DOI : 10.2140/gt.2023.27.1947
Keywords: elliptic cohomology, topological modular forms, supersymmetric field theories, partition function

Berwick-Evans, Daniel 1

1 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL, United States
@article{10_2140_gt_2023_27_1947,
     author = {Berwick-Evans, Daniel},
     title = {Chern characters for supersymmetric field theories},
     journal = {Geometry & topology},
     pages = {1947--1986},
     year = {2023},
     volume = {27},
     number = {5},
     doi = {10.2140/gt.2023.27.1947},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1947/}
}
TY  - JOUR
AU  - Berwick-Evans, Daniel
TI  - Chern characters for supersymmetric field theories
JO  - Geometry & topology
PY  - 2023
SP  - 1947
EP  - 1986
VL  - 27
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1947/
DO  - 10.2140/gt.2023.27.1947
ID  - 10_2140_gt_2023_27_1947
ER  - 
%0 Journal Article
%A Berwick-Evans, Daniel
%T Chern characters for supersymmetric field theories
%J Geometry & topology
%D 2023
%P 1947-1986
%V 27
%N 5
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1947/
%R 10.2140/gt.2023.27.1947
%F 10_2140_gt_2023_27_1947
Berwick-Evans, Daniel. Chern characters for supersymmetric field theories. Geometry & topology, Tome 27 (2023) no. 5, pp. 1947-1986. doi: 10.2140/gt.2023.27.1947

[1] O Alvarez, T P Killingback, M Mangano, P Windey, The Dirac–Ramond operator in string theory and loop space index theorems, Nuclear Phys. B Proc. Suppl. 1A (1987) 189 | DOI

[2] B Arnold, The parallel transport of a superconnection, in preparation

[3] T Barthel, D Berwick-Evans, N Stapleton, Power operations in the Stolz–Teichner program, Geom. Topol. 26 (2022) 1773 | DOI

[4] N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, 298, Springer (1992) | DOI

[5] D Berwick-Evans, Supersymmetric localization, modularity and the Witten genus, preprint (2019)

[6] D Berwick-Evans, Supersymmetric field theories and the elliptic index theorem with complex coefficients, Geom. Topol. 25 (2021) 2287 | DOI

[7] D Berwick-Evans, Equivariant elliptic cohomology, gauged sigma models, and discrete torsion, Trans. Amer. Math. Soc. 375 (2022) 369 | DOI

[8] D Berwick-Evans, A Tripathy, A model for complex analytic equivariant elliptic cohomology from quantum field theory, preprint (2018)

[9] A Dabholkar, P Putrov, E Witten, Duality and mock modularity, SciPost Phys. 9 (2020) 072 | DOI

[10] P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten, editors, Quantum fields and strings: a course for mathematicians, I, Amer. Math. Soc. (1999)

[11] P Deligne, D S Freed, Sign manifesto, from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 357

[12] P Deligne, J W Morgan, Notes on supersymmetry (following Joseph Bernstein), from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 41

[13] R Donagi, E Witten, Supermoduli space is not projected, from: "String-Math 2012" (editors R Donagi, S Katz, A Klemm, D R Morrison), Proc. Sympos. Pure Math. 90, Amer. Math. Soc. (2015) 19 | DOI

[14] F Dumitrescu, Superconnections and parallel transport, Pacific J. Math. 236 (2008) 307 | DOI

[15] D S Freed, Five lectures on supersymmetry, Amer. Math. Soc. (1999)

[16] D Gaiotto, T Johnson-Freyd, Mock modularity and a secondary elliptic genus, preprint (2019)

[17] D Gaiotto, T Johnson-Freyd, E Witten, A note on some minimally supersymmetric models in two dimensions, from: "Integrability, quantization, and geometry, II : Quantum theories and algebraic geometry" (editors S Novikov, I Krichever, O Ogievetsky, S Shlosman), Proc. Sympos. Pure Math. 103, Amer. Math. Soc. (2021) 203 | DOI

[18] F Han, Supersymmetric QFT, super loop spaces and Bismut–Chern character, preprint (2008)

[19] H Hohnhold, M Kreck, S Stolz, P Teichner, Differential forms and 0–dimensional supersymmetric field theories, Quantum Topol. 2 (2011) 1 | DOI

[20] H Hohnhold, S Stolz, P Teichner, From minimal geodesics to supersymmetric field theories, from: "A celebration of the mathematical legacy of Raoul Bott" (editor P R Kotiuga), CRM Proc. Lecture Notes 50, Amer. Math. Soc. (2010) 207 | DOI

[21] J Lurie, A survey of elliptic cohomology, from: "Algebraic topology" (editors N A Baas, E M Friedlander, B Jahren, P A Østvær), Abel Symp. 4, Springer (2009) 219 | DOI

[22] D Quillen, Superconnections and the Chern character, Topology 24 (1985) 89 | DOI

[23] G Segal, Elliptic cohomology (after Landweber–Stong, Ochanine, Witten, and others), from: "Séminaire Bourbaki 1987/88", Astérisque 161–162, Soc. Math. France (1988) 187

[24] G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 421 | DOI

[25] S Stolz, P Teichner, What is an elliptic object?, from: "Topology, geometry and quantum field theory" (editor U Tillman), London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 247 | DOI

[26] S Stolz, P Teichner, Supersymmetric field theories and generalized cohomology, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 279 | DOI

[27] E Witten, Supersymmetry and Morse theory, J. Differential Geometry 17 (1982) 661

[28] E Witten, Elliptic genera and quantum field theory, Comm. Math. Phys. 109 (1987) 525 | DOI

[29] E Witten, The index of the Dirac operator in loop space, from: "Elliptic curves and modular forms in algebraic topology" (editor P S Landweber), Lecture Notes in Math. 1326, Springer (1988) 161 | DOI

[30] E Witten, Notes on super Riemann surfaces and their moduli, Pure Appl. Math. Q. 15 (2019) 57 | DOI

Cité par Sources :