Compact moduli of elliptic K3 surfaces
Geometry & topology, Tome 27 (2023) no. 5, pp. 1891-1946.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct various modular compactifications of the space of elliptic K3 surfaces using tools from the minimal model program, and explicitly describe the surfaces parametrized by their boundaries. The coarse spaces of our constructed compactifications admit morphisms to the Satake–Baily–Borel compactification and the GIT compactification of Miranda.

DOI : 10.2140/gt.2023.27.1891
Keywords: moduli spaces, elliptic surfaces, K3 surfaces, KSBA, stable pairs, twisted stable maps

Ascher, Kenneth 1 ; Bejleri, Dori 2

1 Department of Mathematics, University of California, Irvine, Irvine, CA, United States
2 Mathematics Department, Harvard University, Cambridge, MA, United States
@article{GT_2023_27_5_a4,
     author = {Ascher, Kenneth and Bejleri, Dori},
     title = {Compact moduli of elliptic {K3} surfaces},
     journal = {Geometry & topology},
     pages = {1891--1946},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2023},
     doi = {10.2140/gt.2023.27.1891},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1891/}
}
TY  - JOUR
AU  - Ascher, Kenneth
AU  - Bejleri, Dori
TI  - Compact moduli of elliptic K3 surfaces
JO  - Geometry & topology
PY  - 2023
SP  - 1891
EP  - 1946
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1891/
DO  - 10.2140/gt.2023.27.1891
ID  - GT_2023_27_5_a4
ER  - 
%0 Journal Article
%A Ascher, Kenneth
%A Bejleri, Dori
%T Compact moduli of elliptic K3 surfaces
%J Geometry & topology
%D 2023
%P 1891-1946
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1891/
%R 10.2140/gt.2023.27.1891
%F GT_2023_27_5_a4
Ascher, Kenneth; Bejleri, Dori. Compact moduli of elliptic K3 surfaces. Geometry & topology, Tome 27 (2023) no. 5, pp. 1891-1946. doi : 10.2140/gt.2023.27.1891. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1891/

[1] D Abramovich, A Vistoli, Complete moduli for fibered surfaces, from: "Recent progress in intersection theory" (editors G Ellingsrud, W Fulton, A Vistoli), Birkhäuser (2000) 1 | DOI

[2] D Abramovich, A Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002) 27 | DOI

[3] V Alexeev, Boundedness and K2 for log surfaces, Internat. J. Math. 5 (1994) 779 | DOI

[4] V Alexeev, A Brunyate, P Engel, Compactifications of moduli of elliptic K3 surfaces : stable pair and toroidal, Geom. Topol. 26 (2022) 3525 | DOI

[5] V Alexeev, P Engel, A Thompson, Stable pair compactification of moduli of K3 surfaces of degree 2, J. Reine Angew. Math. 799 (2023) 1 | DOI

[6] K Ascher, D Bejleri, Log canonical models of elliptic surfaces, Adv. Math. 320 (2017) 210 | DOI

[7] K Ascher, D Bejleri, Moduli of fibered surface pairs from twisted stable maps, Math. Ann. 374 (2019) 1007 | DOI

[8] K Ascher, D Bejleri, Moduli of weighted stable elliptic surfaces and invariance of log plurigenera, Proc. Lond. Math. Soc. 122 (2021) 617 | DOI

[9] K Ascher, D Bejleri, Smoothability of relative stable maps to stacky curves, Épijournal Géom. Algébrique 7 (2023) | DOI

[10] W L Baily Jr., A Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966) 442 | DOI

[11] W P Barth, K Hulek, C A M Peters, A Van De Ven, Compact complex surfaces, 4, Springer (2004) | DOI

[12] A Brunyate, A modular compactification of the space of elliptic K3 surfaces, PhD thesis, University of Georgia (2015)

[13] C Cadman, Using stacks to impose tangency conditions on curves, Amer. J. Math. 129 (2007) 405 | DOI

[14] I V Dolgachev, Mirror symmetry for lattice polarized K3 surfaces, J. Math. Sci. 81 (1996) 2599 | DOI

[15] R Friedman, A new proof of the global Torelli theorem for K3 surfaces, Ann. of Math. 120 (1984) 237 | DOI

[16] R Friedman, The period map at the boundary of moduli, from: "Topics in transcendental algebraic geometry" (editor P Griffiths), Ann. of Math. Stud. 106, Princeton Univ. Press (1984) 183 | DOI

[17] A Gathmann, Absolute and relative Gromov–Witten invariants of very ample hypersurfaces, Duke Math. J. 115 (2002) 171 | DOI

[18] N Giansiracusa, W D Gillam, On Kapranov’s description of M0,n as a Chow quotient, Turkish J. Math. 38 (2014) 625 | DOI

[19] C D Hacon, J Mckernan, C Xu, Boundedness of moduli of varieties of general type, J. Eur. Math. Soc. 20 (2018) 865 | DOI

[20] C D Hacon, C Xu, Existence of log canonical closures, Invent. Math. 192 (2013) 161 | DOI

[21] A Harder, A Thompson, The geometry and moduli of K3 surfaces, from: "Calabi–Yau varieties : arithmetic, geometry and physics" (editors R Laza, M Schütt, N Yui), Fields Inst. Monogr. 34, Fields Inst. Res. Math. Sci. (2015) 3 | DOI

[22] R Hartshorne, C Polini, Divisor class groups of singular surfaces, Trans. Amer. Math. Soc. 367 (2015) 6357 | DOI

[23] B Hassett, Moduli spaces of weighted pointed stable curves, Adv. Math. 173 (2003) 316 | DOI

[24] G Heckman, E Looijenga, The moduli space of rational elliptic surfaces, from: "Algebraic geometry 2000" (editors S Usui, M Green, L Illusie, K Kato, E Looijenga, S Mukai, S Saito), Adv. Stud. Pure Math. 36, Math. Soc. Japan (2002) 185 | DOI

[25] G Inchiostro, Moduli of Weierstrass fibrations with marked section, Adv. Math. 375 (2020) 107374 | DOI

[26] J Kollár, Singularities of the minimal model program, 200, Cambridge Univ. Press (2013) | DOI

[27] J Kollár, Mumford’s influence on the moduli theory of algebraic varieties, Pure Appl. Math. Q. 17 (2021) 619 | DOI

[28] J Kollár, Families of varieties of general type, (2022)

[29] J Kollár, S J Kovács, Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23 (2010) 791 | DOI

[30] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[31] J Kollár, N I Shepherd-Barron, Threefolds and deformations of surface singularities, Invent. Math. 91 (1988) 299 | DOI

[32] S J Kovács, Z Patakfalvi, Projectivity of the moduli space of stable log-varieties and subadditivity of log-Kodaira dimension, J. Amer. Math. Soc. 30 (2017) 959 | DOI

[33] G La Nave, Explicit stable models of elliptic surfaces with sections, preprint (2002)

[34] R Laza, The KSBA compactification for the moduli space of degree two K3 pairs, J. Eur. Math. Soc. 18 (2016) 225 | DOI

[35] R Laza, Z Zhang, Classical period domains, from: "Recent advances in Hodge theory" (editors M Kerr, G Pearlstein), London Math. Soc. Lecture Note Ser. 427, Cambridge Univ. Press (2016) 3 | DOI

[36] R Miranda, The moduli of Weierstrass fibrations over P1, Math. Ann. 255 (1981) 379 | DOI

[37] R Miranda, The basic theory of elliptic surfaces, ETS Editrice (1989)

[38] V V Nikulin, Finite groups of automorphisms of Kählerian K3 surfaces, Trudy Moskov. Mat. Obshch. 38 (1979) 75

[39] Y Odaka, Y Oshima, Collapsing K3 surfaces, tropical geometry and moduli compactifications of Satake, Morgan–Shalen type, 40, Math. Soc. Japan (2021) | DOI

[40] M C Olsson, (Log) twisted curves, Compos. Math. 143 (2007) 476 | DOI

[41] U Persson, Configurations of Kodaira fibers on rational elliptic surfaces, Math. Z. 205 (1990) 1 | DOI

[42] F Scattone, On the compactification of moduli spaces for algebraic K3 surfaces, 374, Amer. Math. Soc. (1987) | DOI

[43] M Schütt, T Shioda, Elliptic surfaces, from: "Algebraic geometry in East Asia" (editors J Keum, S Kondō, K Konno, K Oguiso), Adv. Stud. Pure Math. 60, Math. Soc. Japan (2010) 51 | DOI

[44] T Shioda, The elliptic K3 surfaces with a maximal singular fibre, C. R. Math. Acad. Sci. Paris 337 (2003) 461 | DOI

[45] R Vakil, The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000) 101 | DOI

Cité par Sources :