Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We reconstruct all-genus Fan–Jarvis–Ruan–Witten invariants of a Fermat cubic Landau–Ginzburg space from genus-one primary invariants, using tautological relations and axioms of cohomological field theories. The genus-one primary invariants satisfy a Chazy equation by the Belorousski–Pandharipande relation. They are completely determined by a single genus-one invariant, which can be obtained from cosection localization and intersection theory on moduli of three-spin curves.
We solve an all-genus Landau–Ginzburg/Calabi–Yau correspondence conjecture for the Fermat cubic Landau–Ginzburg space using Cayley transformation on quasimodular forms. This transformation relates two nonsemisimple CohFT theories: the Fan–Jarvis–Ruan–Witten theory of the Fermat cubic polynomial and the Gromov–Witten theory of the Fermat cubic curve. As a consequence, Fan–Jarvis–Ruan–Witten invariants at any genus can be computed using Gromov–Witten invariants of the elliptic curve. They also satisfy nice structures, including holomorphic anomaly equations and Virasoro constraints.
Li, Jun 1 ; Shen, Yefeng 2 ; Zhou, Jie 3
@article{GT_2023_27_5_a3, author = {Li, Jun and Shen, Yefeng and Zhou, Jie}, title = {Higher genus {FJRW} invariants of a {Fermat} cubic}, journal = {Geometry & topology}, pages = {1845--1890}, publisher = {mathdoc}, volume = {27}, number = {5}, year = {2023}, doi = {10.2140/gt.2023.27.1845}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1845/} }
TY - JOUR AU - Li, Jun AU - Shen, Yefeng AU - Zhou, Jie TI - Higher genus FJRW invariants of a Fermat cubic JO - Geometry & topology PY - 2023 SP - 1845 EP - 1890 VL - 27 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1845/ DO - 10.2140/gt.2023.27.1845 ID - GT_2023_27_5_a3 ER -
Li, Jun; Shen, Yefeng; Zhou, Jie. Higher genus FJRW invariants of a Fermat cubic. Geometry & topology, Tome 27 (2023) no. 5, pp. 1845-1890. doi : 10.2140/gt.2023.27.1845. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1845/
[1] Givental-type reconstruction at a nonsemisimple point, Michigan Math. J. 67 (2018) 333 | DOI
, ,[2] A descendent relation in genus 2, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000) 171
, ,[3] The character of the infinite wedge representation, Adv. Math. 149 (2000) 1 | DOI
, ,[4] Algebraic virtual cycles for quantum singularity theories, Comm. Anal. Geom. 29 (2021) 1749 | DOI
, , ,[5] An algebraic proof of the hyperplane property of the genus one GW-invariants of quintics, J. Differential Geom. 100 (2015) 251
, ,[6] Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI
, , ,[7] Mixed-spin-P fields of Fermat polynomials, Camb. J. Math. 7 (2019) 319 | DOI
, , , ,[8] An effective theory of GW and FJRW invariants of quintic Calabi–Yau manifolds, J. Differential Geom. 120 (2022) 251 | DOI
, , , ,[9] Towards an enumerative geometry of the moduli space of twisted curves and rth roots, Compos. Math. 144 (2008) 1461 | DOI
,[10] Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014) 127 | DOI
, , ,[11] Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010) 117 | DOI
, ,[12] A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence, Ann. Inst. Fourier (Grenoble) 61 (2011) 2803 | DOI
, ,[13] LG/CY correspondence : the state space isomorphism, Adv. Math. 227 (2011) 2157 | DOI
, ,[14] Landau–Ginzburg/Calabi–Yau correspondence for the complete intersections X3,3 and X2,2,2,2, Adv. Math. 307 (2017) 1 | DOI
,[15] Frobenius manifolds and Virasoro constraints, Selecta Math. 5 (1999) 423 | DOI
, ,[16] Quantum cohomology and Virasoro algebra, Phys. Lett. B 402 (1997) 71 | DOI
, , ,[17] Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI
, ,[18] Tautological relations and the r–spin Witten conjecture, Ann. Sci. Éc. Norm. Supér. 43 (2010) 621 | DOI
, , ,[19] The Witten equation and its virtual fundamental cycle, preprint (2007)
, , ,[20] The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013) 1 | DOI
, , ,[21] Computational techniques in FJRW theory with applications to Landau–Ginzburg mirror symmetry, Adv. Theor. Math. Phys. 19 (2015) 1339 | DOI
,[22] Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551 | DOI
,[23] Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. (2001) 1265 | DOI
,[24] Calabi–Yau manifolds and renormalization group flows, Nuclear Phys. B 324 (1989) 371 | DOI
, , ,[25] The genus-one global mirror theorem for the quintic 3–fold, Compos. Math. 155 (2019) 995 | DOI
, ,[26] Genus-one mirror symmetry in the Landau–Ginzburg model, Algebr. Geom. 6 (2019) 260 | DOI
, ,[27] Virasoro constraints in quantum singularity theories, preprint (2021)
, ,[28] Topological recursive relations in H2g(Mg,n), Invent. Math. 148 (2002) 627 | DOI
,[29] Gromov–Witten theory of quotients of Fermat Calabi–Yau varieties, 1310, Amer. Math. Soc. (2021) | DOI
, , , ,[30] A generalized Jacobi theta function and quasimodular forms, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 165 | DOI
, ,[31] Quantum singularity theory via cosection localization, J. Reine Angew. Math. 766 (2020) 73 | DOI
, ,[32] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525 | DOI
, ,[33] Relations between the correlators of the topological sigma-model coupled to gravity, Comm. Math. Phys. 196 (1998) 385 | DOI
, ,[34] Landau–Ginzburg/Calabi–Yau correspondence of all genera for elliptic orbifold 1, preprint (2011)
, ,[35] Notes on axiomatic Gromov–Witten theory and applications, from: "Algebraic geometry" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 309 | DOI
,[36] A proof of the Landau–Ginzburg/Calabi–Yau correspondence via the crepant transformation conjecture, Ann. Sci. Éc. Norm. Supér. 49 (2016) 1403 | DOI
, , ,[37] A mirror theorem for the mirror quintic, Geom. Topol. 18 (2014) 1437 | DOI
, ,[38] A genus-one FJRW invariant via two methods, Math. Z. 302 (2022) 1927 | DOI
, , , ,[39] Criticality, catastrophes, and compactifications, from: "Physics and mathematics of strings" (editors L Brink, D Friedan, A M Polyakov), World Sci. (1990) 389 | DOI
,[40] Gromov–Witten theory of elliptic orbifold P1 and quasi-modular forms, preprint (2011)
, ,[41] Global mirror symmetry for invertible simple elliptic singularities, Ann. Inst. Fourier (Grenoble) 66 (2016) 271 | DOI
, ,[42] Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math. 213 (2018) 507 | DOI
, ,[43] Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI
, ,[44] Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 | DOI
, ,[45] The Gromov–Witten theory of an elliptic curve and quasimodular forms, senior thesis, Princeton University (2008)
,[46] Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016) 1 | DOI
, ,[47] The genus one Gromov–Witten invariants of Calabi–Yau complete intersections, Trans. Amer. Math. Soc. 365 (2013) 1149 | DOI
,[48] The Witten equation and the geometry of the Landau–Ginzburg model, from: "String-Math 2011" (editors J Block, J Distler, R Donagi, E Sharpe), Proc. Sympos. Pure Math. 85, Amer. Math. Soc. (2012) 209 | DOI
,[49] Ramanujan identities and quasi-modularity in Gromov–Witten theory, Commun. Number Theory Phys. 11 (2017) 405 | DOI
, ,[50] LG/CY correspondence for elliptic orbifold curves via modularity, J. Differential Geom. 109 (2018) 291 | DOI
, ,[51] The arithmetic of elliptic curves, 106, Springer (2009) | DOI
,[52] The structure of 2D semi-simple field theories, Invent. Math. 188 (2012) 525 | DOI
,[53] Nearly overconvergent modular forms, from: "Iwasawa theory 2012" (editors T Bouganis, O Venjakob), Contrib. Math. Comput. Sci. 7, Springer (2014) 401 | DOI
,[54] Catastrophes and the classification of conformal theories, Phys. Lett. B 218 (1989) 51 | DOI
, ,[55] Zur Theorie der elliptischen Funktionen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1882) 443
,[56] Phases of N = 2 theories in two dimensions, Nuclear Phys. B 403 (1993) 159 | DOI
,[57] Elliptic modular forms and their applications, from: "The 1-2-3 of modular forms" (editor K Ranestad), Springer (2008) 1 | DOI
,[58] The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009) 691 | DOI
,Cité par Sources :