Higher genus FJRW invariants of a Fermat cubic
Geometry & topology, Tome 27 (2023) no. 5, pp. 1845-1890.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We reconstruct all-genus Fan–Jarvis–Ruan–Witten invariants of a Fermat cubic Landau–Ginzburg space (x13 + x23 + x33: [3μ3] ) from genus-one primary invariants, using tautological relations and axioms of cohomological field theories. The genus-one primary invariants satisfy a Chazy equation by the Belorousski–Pandharipande relation. They are completely determined by a single genus-one invariant, which can be obtained from cosection localization and intersection theory on moduli of three-spin curves.

We solve an all-genus Landau–Ginzburg/Calabi–Yau correspondence conjecture for the Fermat cubic Landau–Ginzburg space using Cayley transformation on quasimodular forms. This transformation relates two nonsemisimple CohFT theories: the Fan–Jarvis–Ruan–Witten theory of the Fermat cubic polynomial and the Gromov–Witten theory of the Fermat cubic curve. As a consequence, Fan–Jarvis–Ruan–Witten invariants at any genus can be computed using Gromov–Witten invariants of the elliptic curve. They also satisfy nice structures, including holomorphic anomaly equations and Virasoro constraints.

DOI : 10.2140/gt.2023.27.1845
Keywords: FJRW invariants, Fermat cubic, quasimodular forms, LG/CY correspondence

Li, Jun 1 ; Shen, Yefeng 2 ; Zhou, Jie 3

1 Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
2 Department of Mathematics, University of Oregon, Eugene, OR, United States
3 Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
@article{GT_2023_27_5_a3,
     author = {Li, Jun and Shen, Yefeng and Zhou, Jie},
     title = {Higher genus {FJRW} invariants of a {Fermat} cubic},
     journal = {Geometry & topology},
     pages = {1845--1890},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2023},
     doi = {10.2140/gt.2023.27.1845},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1845/}
}
TY  - JOUR
AU  - Li, Jun
AU  - Shen, Yefeng
AU  - Zhou, Jie
TI  - Higher genus FJRW invariants of a Fermat cubic
JO  - Geometry & topology
PY  - 2023
SP  - 1845
EP  - 1890
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1845/
DO  - 10.2140/gt.2023.27.1845
ID  - GT_2023_27_5_a3
ER  - 
%0 Journal Article
%A Li, Jun
%A Shen, Yefeng
%A Zhou, Jie
%T Higher genus FJRW invariants of a Fermat cubic
%J Geometry & topology
%D 2023
%P 1845-1890
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1845/
%R 10.2140/gt.2023.27.1845
%F GT_2023_27_5_a3
Li, Jun; Shen, Yefeng; Zhou, Jie. Higher genus FJRW invariants of a Fermat cubic. Geometry & topology, Tome 27 (2023) no. 5, pp. 1845-1890. doi : 10.2140/gt.2023.27.1845. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1845/

[1] A Basalaev, N Priddis, Givental-type reconstruction at a nonsemisimple point, Michigan Math. J. 67 (2018) 333 | DOI

[2] P Belorousski, R Pandharipande, A descendent relation in genus 2, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 29 (2000) 171

[3] S Bloch, A Okounkov, The character of the infinite wedge representation, Adv. Math. 149 (2000) 1 | DOI

[4] H L Chang, Y H Kiem, J Li, Algebraic virtual cycles for quantum singularity theories, Comm. Anal. Geom. 29 (2021) 1749 | DOI

[5] H L Chang, J Li, An algebraic proof of the hyperplane property of the genus one GW-invariants of quintics, J. Differential Geom. 100 (2015) 251

[6] H L Chang, J Li, W P Li, Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015) 1015 | DOI

[7] H L Chang, J Li, W P Li, C C M Liu, Mixed-spin-P fields of Fermat polynomials, Camb. J. Math. 7 (2019) 319 | DOI

[8] H L Chang, J Li, W P Li, C C M Liu, An effective theory of GW and FJRW invariants of quintic Calabi–Yau manifolds, J. Differential Geom. 120 (2022) 251 | DOI

[9] A Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and rth roots, Compos. Math. 144 (2008) 1461 | DOI

[10] A Chiodo, H Iritani, Y Ruan, Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014) 127 | DOI

[11] A Chiodo, Y Ruan, Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010) 117 | DOI

[12] A Chiodo, Y Ruan, A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence, Ann. Inst. Fourier (Grenoble) 61 (2011) 2803 | DOI

[13] A Chiodo, Y Ruan, LG/CY correspondence : the state space isomorphism, Adv. Math. 227 (2011) 2157 | DOI

[14] E Clader, Landau–Ginzburg/Calabi–Yau correspondence for the complete intersections X3,3 and X2,2,2,2, Adv. Math. 307 (2017) 1 | DOI

[15] B Dubrovin, Y Zhang, Frobenius manifolds and Virasoro constraints, Selecta Math. 5 (1999) 423 | DOI

[16] T Eguchi, K Hori, C S Xiong, Quantum cohomology and Virasoro algebra, Phys. Lett. B 402 (1997) 71 | DOI

[17] C Faber, R Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. 7 (2005) 13 | DOI

[18] C Faber, S Shadrin, D Zvonkine, Tautological relations and the r–spin Witten conjecture, Ann. Sci. Éc. Norm. Supér. 43 (2010) 621 | DOI

[19] H Fan, T J Jarvis, Y Ruan, The Witten equation and its virtual fundamental cycle, preprint (2007)

[20] H Fan, T Jarvis, Y Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. 178 (2013) 1 | DOI

[21] A Francis, Computational techniques in FJRW theory with applications to Landau–Ginzburg mirror symmetry, Adv. Theor. Math. Phys. 19 (2015) 1339 | DOI

[22] A B Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551 | DOI

[23] A B Givental, Semisimple Frobenius structures at higher genus, Int. Math. Res. Not. (2001) 1265 | DOI

[24] B R Greene, C Vafa, N P Warner, Calabi–Yau manifolds and renormalization group flows, Nuclear Phys. B 324 (1989) 371 | DOI

[25] S Guo, D Ross, The genus-one global mirror theorem for the quintic 3–fold, Compos. Math. 155 (2019) 995 | DOI

[26] S Guo, D Ross, Genus-one mirror symmetry in the Landau–Ginzburg model, Algebr. Geom. 6 (2019) 260 | DOI

[27] W He, Y Shen, Virasoro constraints in quantum singularity theories, preprint (2021)

[28] E N Ionel, Topological recursive relations in H2g(Mg,n), Invent. Math. 148 (2002) 627 | DOI

[29] H Iritani, T Milanov, Y Ruan, Y Shen, Gromov–Witten theory of quotients of Fermat Calabi–Yau varieties, 1310, Amer. Math. Soc. (2021) | DOI

[30] M Kaneko, D Zagier, A generalized Jacobi theta function and quasimodular forms, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 165 | DOI

[31] Y H Kiem, J Li, Quantum singularity theory via cosection localization, J. Reine Angew. Math. 766 (2020) 73 | DOI

[32] M Kontsevich, Y Manin, Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525 | DOI

[33] M Kontsevich, Y Manin, Relations between the correlators of the topological sigma-model coupled to gravity, Comm. Math. Phys. 196 (1998) 385 | DOI

[34] M Krawitz, Y Shen, Landau–Ginzburg/Calabi–Yau correspondence of all genera for elliptic orbifold 1, preprint (2011)

[35] Y P Lee, Notes on axiomatic Gromov–Witten theory and applications, from: "Algebraic geometry" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 309 | DOI

[36] Y P Lee, N Priddis, M Shoemaker, A proof of the Landau–Ginzburg/Calabi–Yau correspondence via the crepant transformation conjecture, Ann. Sci. Éc. Norm. Supér. 49 (2016) 1403 | DOI

[37] Y P Lee, M Shoemaker, A mirror theorem for the mirror quintic, Geom. Topol. 18 (2014) 1437 | DOI

[38] J Li, W P Li, Y Shen, J Zhou, A genus-one FJRW invariant via two methods, Math. Z. 302 (2022) 1927 | DOI

[39] E J Martinec, Criticality, catastrophes, and compactifications, from: "Physics and mathematics of strings" (editors L Brink, D Friedan, A M Polyakov), World Sci. (1990) 389 | DOI

[40] T Milanov, Y Ruan, Gromov–Witten theory of elliptic orbifold P1 and quasi-modular forms, preprint (2011)

[41] T Milanov, Y Shen, Global mirror symmetry for invertible simple elliptic singularities, Ann. Inst. Fourier (Grenoble) 66 (2016) 271 | DOI

[42] G Oberdieck, A Pixton, Holomorphic anomaly equations and the Igusa cusp form conjecture, Invent. Math. 213 (2018) 507 | DOI

[43] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. 163 (2006) 517 | DOI

[44] A Okounkov, R Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006) 47 | DOI

[45] A Pixton, The Gromov–Witten theory of an elliptic curve and quasimodular forms, senior thesis, Princeton University (2008)

[46] A Polishchuk, A Vaintrob, Matrix factorizations and cohomological field theories, J. Reine Angew. Math. 714 (2016) 1 | DOI

[47] A Popa, The genus one Gromov–Witten invariants of Calabi–Yau complete intersections, Trans. Amer. Math. Soc. 365 (2013) 1149 | DOI

[48] Y Ruan, The Witten equation and the geometry of the Landau–Ginzburg model, from: "String-Math 2011" (editors J Block, J Distler, R Donagi, E Sharpe), Proc. Sympos. Pure Math. 85, Amer. Math. Soc. (2012) 209 | DOI

[49] Y Shen, J Zhou, Ramanujan identities and quasi-modularity in Gromov–Witten theory, Commun. Number Theory Phys. 11 (2017) 405 | DOI

[50] Y Shen, J Zhou, LG/CY correspondence for elliptic orbifold curves via modularity, J. Differential Geom. 109 (2018) 291 | DOI

[51] J H Silverman, The arithmetic of elliptic curves, 106, Springer (2009) | DOI

[52] C Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012) 525 | DOI

[53] E Urban, Nearly overconvergent modular forms, from: "Iwasawa theory 2012" (editors T Bouganis, O Venjakob), Contrib. Math. Comput. Sci. 7, Springer (2014) 401 | DOI

[54] C Vafa, N Warner, Catastrophes and the classification of conformal theories, Phys. Lett. B 218 (1989) 51 | DOI

[55] K Weierstrass, Zur Theorie der elliptischen Funktionen, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1882) 443

[56] E Witten, Phases of N = 2 theories in two dimensions, Nuclear Phys. B 403 (1993) 159 | DOI

[57] D Zagier, Elliptic modular forms and their applications, from: "The 1-2-3 of modular forms" (editor K Ranestad), Springer (2008) 1 | DOI

[58] A Zinger, The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009) 691 | DOI

Cité par Sources :