Orbifold bordism and duality for finite orbispectra
Geometry & topology, Tome 27 (2023) no. 5, pp. 1747-1844.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct the stable (representable) homotopy category of finite orbispectra, whose objects are formal desuspensions of finite orbi-CW–pairs by vector bundles and whose morphisms are stable homotopy classes of (representable) relative maps. The stable representable homotopy category of finite orbispectra admits a contravariant involution extending Spanier–Whitehead duality. This duality relates homotopical cobordism theories (cohomology theories on finite orbispectra) represented by global Thom spectra to geometric (derived) orbifold bordism groups (homology theories on finite orbispectra). This isomorphism extends the classical Pontryagin–Thom isomorphism and its known equivariant generalizations.

DOI : 10.2140/gt.2023.27.1747
Keywords: orbispaces, orbispectra, Spanier–Whitehead duality, global homotopy theory, Pontryagin–Thom construction, stable homotopy theory, orbifold bordism, equivariant bordism

Pardon, John 1

1 Department of Mathematics, Princeton University, Princeton, NJ, United States
@article{GT_2023_27_5_a2,
     author = {Pardon, John},
     title = {Orbifold bordism and duality for finite orbispectra},
     journal = {Geometry & topology},
     pages = {1747--1844},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2023},
     doi = {10.2140/gt.2023.27.1747},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1747/}
}
TY  - JOUR
AU  - Pardon, John
TI  - Orbifold bordism and duality for finite orbispectra
JO  - Geometry & topology
PY  - 2023
SP  - 1747
EP  - 1844
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1747/
DO  - 10.2140/gt.2023.27.1747
ID  - GT_2023_27_5_a2
ER  - 
%0 Journal Article
%A Pardon, John
%T Orbifold bordism and duality for finite orbispectra
%J Geometry & topology
%D 2023
%P 1747-1844
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1747/
%R 10.2140/gt.2023.27.1747
%F GT_2023_27_5_a2
Pardon, John. Orbifold bordism and duality for finite orbispectra. Geometry & topology, Tome 27 (2023) no. 5, pp. 1747-1844. doi : 10.2140/gt.2023.27.1747. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1747/

[1] A Ángel, A spectral sequence for orbifold cobordism, from: "Algebraic topology—old and new" (editors M Golasiński, Y Rudyak, P Salvatore, N Saveliev, N Wahl), Banach Center Publ. 85, Polish Acad. Sci. Inst. Math. (2009) 141 | DOI

[2] A Angel, When is a differentiable manifold the boundary of an orbifold?, from: "Geometric and topological methods for quantum field theory" (editors H Ocampo, E Pariguán, S Paycha), Cambridge Univ. Press (2010) 330 | DOI

[3] M F Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961) 200 | DOI

[4] K Behrend, Introduction to algebraic stacks, from: "Moduli spaces" (editors L Brambila-Paz, O García-Prada, P Newstead, R P Thomas), London Math. Soc. Lecture Note Ser. 411, Cambridge Univ. Press (2014) 1

[5] K Behrend, B Noohi, Uniformization of Deligne–Mumford curves, J. Reine Angew. Math. 599 (2006) 111 | DOI

[6] T Bröcker, E C Hook, Stable equivariant bordism, Math. Z. 129 (1972) 269 | DOI

[7] A D Brooke-Taylor, Products of CW complexes, preprint (2017)

[8] T A Chapman, Invariance of torsion and the Borsuk conjecture, Canadian J. Math. 32 (1980) 1333 | DOI

[9] M C Cheng, Poincaré duality in Morava K–theory for classifying spaces of orbifolds, preprint (2013)

[10] P E Conner, E E Floyd, Differentiable periodic maps, 33, Springer (1964) | DOI

[11] T Tom Dieck, Bordism of G–manifolds and integrality theorems, Topology 9 (1970) 345 | DOI

[12] T Tom Dieck, Orbittypen und äquivariante Homologie, II, Arch. Math. (Basel) 26 (1975) 650 | DOI

[13] K S Druschel, Oriented orbifold cobordism, Pacific J. Math. 164 (1994) 299 | DOI

[14] K S Druschel, The cobordism of oriented three dimensional orbifolds, Pacific J. Math. 193 (2000) 45 | DOI

[15] K Druschel, Oriented orbifold vertex groups and cobordism and an associated differential graded algebra, Algebr. Geom. Topol. 15 (2015) 169 | DOI

[16] S Ferry, A Ranicki, A survey of Wall’s finiteness obstruction, from: "Surveys on surgery theory, II" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 63

[17] K Fukaya, K Ono, Floer homology and Gromov–Witten invariant over integer of general symplectic manifolds : summary, from: "Taniguchi Conference on Mathematics Nara ’98" (editors M Maruyama, T Sunada), Adv. Stud. Pure Math. 31, Math. Soc. Japan (2001) 75 | DOI

[18] D Gepner, A Henriques, Homotopy theory of orbispaces, preprint (2007)

[19] J P C Greenlees, H Sadofsky, The Tate spectrum of vn–periodic complex oriented theories, Math. Z. 222 (1996) 391 | DOI

[20] A Haefliger, Orbi-espaces, from: "Sur les groupes hyperboliques d’après Mikhael Gromov" (editors É Ghys, P de la Harpe), Progr. Math. 83, Birkhäuser (1990) 203 | DOI

[21] B Juran, Orbifolds, orbispaces and global homotopy theory, preprint (2020)

[22] R C Kirby, L C Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969) 742 | DOI

[23] R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977)

[24] A Körschgen, A comparison of two models of orbispaces, Homology Homotopy Appl. 20 (2018) 329 | DOI

[25] D Metzler, Topological and smooth stacks, preprint (2003)

[26] J Milnor, Construction of universal bundles, I, Ann. of Math. 63 (1956) 272 | DOI

[27] B Noohi, Foundations of topological stacks, I, preprint (2005)

[28] B Noohi, Homotopy types of topological stacks, Adv. Math. 230 (2012) 2014 | DOI

[29] J Pardon, Enough vector bundles on orbispaces, Compos. Math. 158 (2022) 2046 | DOI

[30] L S Pontryagin, Gladkie mnogoobraziya i ih primeneniya v teorii gomotopiĭ, 45, Izdat. Akad. Nauk SSSR (1955) 139

[31] L S Pontryagin, Smooth manifolds and their applications in homotopy theory, 11, Amer. Math. Soc. (1959) 1

[32] C Rezk, Global homotopy theory and cohesion, preprint (2014)

[33] S Sarkar, Complex cobordism of quasitoric orbifolds, Topology Appl. 194 (2015) 386 | DOI

[34] S Schwede, Global homotopy theory, 34, Cambridge Univ. Press (2018) | DOI

[35] S Schwede, Orbispaces, orthogonal spaces, and the universal compact Lie group, Math. Z. 294 (2020) 71 | DOI

[36] E H Spanier, J H C Whitehead, Duality in homotopy theory, Mathematika 2 (1955) 56 | DOI

[37] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17 | DOI

[38] A G Wasserman, Equivariant differential topology, Topology 8 (1969) 127 | DOI

[39] J E West, Mapping Hilbert cube manifolds to ANR’s : a solution of a conjecture of Borsuk, Ann. of Math. 106 (1977) 1 | DOI

[40] J H C Whitehead, Combinatorial homotopy, I, Bull. Amer. Math. Soc. 55 (1949) 213 | DOI

Cité par Sources :