High-energy harmonic maps and degeneration of minimal surfaces
Geometry & topology, Tome 27 (2023) no. 5, pp. 1691-1746.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let S be a closed surface of genus g 2 and ρ a maximal PSL(2, ) × PSL(2, ) surface group representation. By a result of Schoen, there is a unique ρ–equivariant minimal surface Σ~ in 2 × 2. We study the induced metrics on these minimal surfaces and prove the limits are precisely mixed structures. We prove a similar result for maximal surfaces in AdS3. In the second half of the paper, we provide a geometric interpretation: the minimal surfaces Σ~ degenerate to the core of a product of two –trees. As a consequence, we obtain a compactification of the space of maximal representations of π1(S) into PSL(2, ) × PSL(2, ).

DOI : 10.2140/gt.2023.27.1691
Classification : 49Q05, 53C43
Keywords: minimal lagrangian, harmonic maps, mixed structures, higher Teichmüller space

Ouyang, Charles 1

1 Department of Mathematics, Washington University, St Louis, MO, United States
@article{GT_2023_27_5_a1,
     author = {Ouyang, Charles},
     title = {High-energy harmonic maps and degeneration of minimal surfaces},
     journal = {Geometry & topology},
     pages = {1691--1746},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2023},
     doi = {10.2140/gt.2023.27.1691},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1691/}
}
TY  - JOUR
AU  - Ouyang, Charles
TI  - High-energy harmonic maps and degeneration of minimal surfaces
JO  - Geometry & topology
PY  - 2023
SP  - 1691
EP  - 1746
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1691/
DO  - 10.2140/gt.2023.27.1691
ID  - GT_2023_27_5_a1
ER  - 
%0 Journal Article
%A Ouyang, Charles
%T High-energy harmonic maps and degeneration of minimal surfaces
%J Geometry & topology
%D 2023
%P 1691-1746
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1691/
%R 10.2140/gt.2023.27.1691
%F GT_2023_27_5_a1
Ouyang, Charles. High-energy harmonic maps and degeneration of minimal surfaces. Geometry & topology, Tome 27 (2023) no. 5, pp. 1691-1746. doi : 10.2140/gt.2023.27.1691. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1691/

[1] S I Al’Ber, Higher-dimensional problems in global variational calculus, Dokl. Akad. Nauk SSSR 156 (1964) 727

[2] T Barbot, F Béguin, A Zeghib, Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS3, Geom. Dedicata 126 (2007) 71 | DOI

[3] M Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988) 143 | DOI

[4] F Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139 | DOI

[5] M Burger, A Iozzi, A Parreau, M B Pozzetti, Currents, systoles, and compactifications of character varieties, Proc. Lond. Math. Soc. 123 (2021) 565 | DOI

[6] M Burger, A Iozzi, A Parreau, M B Pozzetti, Weyl chamber length compactification of the PSL(2, R) × PSL(2, R) maximal character variety, preprint (2021)

[7] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, 9, Cambridge Univ. Press (1988) | DOI

[8] G Daskalopoulos, S Dostoglou, R Wentworth, Character varieties and harmonic maps to R–trees, Math. Res. Lett. 5 (1998) 523 | DOI

[9] M Duchin, C J Leininger, K Rafi, Length spectra and degeneration of flat metrics, Invent. Math. 182 (2010) 231 | DOI

[10] J Eells, B Fuglede, Harmonic maps between Riemannian polyhedra, 142, Cambridge Univ. Press (2001)

[11] J Eells Jr., J H Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109 | DOI

[12] A Fathi, F Laudenbach, V Poénaru, Thurston’s work on surfaces, 48, Princeton Univ. Press (2012)

[13] J Frazier, Length spectral rigidity of non-positively curved surfaces, PhD thesis, University of Maryland, College Park (2012)

[14] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, 224, Springer (1977) | DOI

[15] O Glorieux, Counting closed geodesics in globally hyperbolic maximal compact AdS 3–manifolds, Geom. Dedicata 188 (2017) 63 | DOI

[16] O Glorieux, The embedding of the space of negatively curved surfaces in geodesic currents, preprint (2019)

[17] W M Goldman, Discontinuous groups and the Euler class, PhD thesis, University of California, Berkeley (1980)

[18] V Guirardel, Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. École Norm. Sup. 38 (2005) 847 | DOI

[19] P Hartman, On homotopic harmonic maps, Canadian J. Math. 19 (1967) 673 | DOI

[20] N J Korevaar, R M Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561 | DOI

[21] N J Korevaar, R M Schoen, Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997) 333 | DOI

[22] K Krasnov, J M Schlenker, Minimal surfaces and particles in 3–manifolds, Geom. Dedicata 126 (2007) 187 | DOI

[23] F Labourie, Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér. 41 (2008) 437 | DOI

[24] F Labourie, Cyclic surfaces and Hitchin components in rank 2, Ann. of Math. 185 (2017) 1 | DOI

[25] É Lebeau, Applications harmoniques entre graphes finis et un théorème de superrigidité, Ann. Inst. Fourier Grenoble 46 (1996) 1183 | DOI

[26] G Martone, C Ouyang, A Tamburelli, A closed ball compactification of a maximal component via cores of trees, preprint (2021)

[27] C Mcmullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989) 95 | DOI

[28] G Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007) 3 | DOI

[29] Y N Minsky, Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom. 35 (1992) 151

[30] J W Morgan, Group actions on trees and the compactification of the space of classes of SO(n,1)–representations, Topology 25 (1986) 1 | DOI

[31] J W Morgan, P B Shalen, Valuations, trees, and degenerations of hyperbolic structures, I, Ann. of Math. 120 (1984) 401 | DOI

[32] J W Morgan, P B Shalen, Free actions of surface groups on R–trees, Topology 30 (1991) 143 | DOI

[33] J P Otal, Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. 131 (1990) 151 | DOI

[34] C Ouyang, A Tamburelli, Limits of Blaschke metrics, Duke Math. J. 170 (2021) 1683 | DOI

[35] C Ouyang, A Tamburelli, Length spectrum compactification of the SO0(2,3)–Hitchin component, Adv. Math. 420 (2023) | DOI

[36] C Ouyang, A Tamburelli, Boundary of the Gothen components, Topology Appl. 326 (2023) 108420 | DOI

[37] R C Penner, J L Harer, Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI

[38] J H Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. 11 (1978) 211 | DOI

[39] R M Schoen, The role of harmonic mappings in rigidity and deformation problems, from: "Complex geometry" (editors G Komatsu, Y Sakane), Lecture Notes in Pure and Appl. Math. 143, Dekker (1993) 179

[40] R Schoen, S T Yau, On univalent harmonic maps between surfaces, Invent. Math. 44 (1978) 265 | DOI

[41] R K Skora, Splittings of surfaces, J. Amer. Math. Soc. 9 (1996) 605 | DOI

[42] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI

[43] A Wienhard, An invitation to higher Teichmüller theory, from: "Proceedings of the International Congress of Mathematicians" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 1013

[44] M Wolf, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449

[45] M Wolf, High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space, Topology 30 (1991) 517 | DOI

[46] M Wolf, Harmonic maps from surfaces to R–trees, Math. Z. 218 (1995) 577 | DOI

Cité par Sources :