Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a closed surface of genus and a maximal surface group representation. By a result of Schoen, there is a unique –equivariant minimal surface in . We study the induced metrics on these minimal surfaces and prove the limits are precisely mixed structures. We prove a similar result for maximal surfaces in . In the second half of the paper, we provide a geometric interpretation: the minimal surfaces degenerate to the core of a product of two –trees. As a consequence, we obtain a compactification of the space of maximal representations of into .
Ouyang, Charles 1
@article{GT_2023_27_5_a1, author = {Ouyang, Charles}, title = {High-energy harmonic maps and degeneration of minimal surfaces}, journal = {Geometry & topology}, pages = {1691--1746}, publisher = {mathdoc}, volume = {27}, number = {5}, year = {2023}, doi = {10.2140/gt.2023.27.1691}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1691/} }
TY - JOUR AU - Ouyang, Charles TI - High-energy harmonic maps and degeneration of minimal surfaces JO - Geometry & topology PY - 2023 SP - 1691 EP - 1746 VL - 27 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1691/ DO - 10.2140/gt.2023.27.1691 ID - GT_2023_27_5_a1 ER -
Ouyang, Charles. High-energy harmonic maps and degeneration of minimal surfaces. Geometry & topology, Tome 27 (2023) no. 5, pp. 1691-1746. doi : 10.2140/gt.2023.27.1691. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1691/
[1] Higher-dimensional problems in global variational calculus, Dokl. Akad. Nauk SSSR 156 (1964) 727
,[2] Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS3, Geom. Dedicata 126 (2007) 71 | DOI
, , ,[3] Degenerations of the hyperbolic space, Duke Math. J. 56 (1988) 143 | DOI
,[4] The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988) 139 | DOI
,[5] Currents, systoles, and compactifications of character varieties, Proc. Lond. Math. Soc. 123 (2021) 565 | DOI
, , , ,[6] Weyl chamber length compactification of the PSL(2, R) × PSL(2, R) maximal character variety, preprint (2021)
, , , ,[7] Automorphisms of surfaces after Nielsen and Thurston, 9, Cambridge Univ. Press (1988) | DOI
, ,[8] Character varieties and harmonic maps to R–trees, Math. Res. Lett. 5 (1998) 523 | DOI
, , ,[9] Length spectra and degeneration of flat metrics, Invent. Math. 182 (2010) 231 | DOI
, , ,[10] Harmonic maps between Riemannian polyhedra, 142, Cambridge Univ. Press (2001)
, ,[11] Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109 | DOI
, ,[12] Thurston’s work on surfaces, 48, Princeton Univ. Press (2012)
, , ,[13] Length spectral rigidity of non-positively curved surfaces, PhD thesis, University of Maryland, College Park (2012)
,[14] Elliptic partial differential equations of second order, 224, Springer (1977) | DOI
, ,[15] Counting closed geodesics in globally hyperbolic maximal compact AdS 3–manifolds, Geom. Dedicata 188 (2017) 63 | DOI
,[16] The embedding of the space of negatively curved surfaces in geodesic currents, preprint (2019)
,[17] Discontinuous groups and the Euler class, PhD thesis, University of California, Berkeley (1980)
,[18] Cœur et nombre d’intersection pour les actions de groupes sur les arbres, Ann. Sci. École Norm. Sup. 38 (2005) 847 | DOI
,[19] On homotopic harmonic maps, Canadian J. Math. 19 (1967) 673 | DOI
,[20] Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993) 561 | DOI
, ,[21] Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom. 5 (1997) 333 | DOI
, ,[22] Minimal surfaces and particles in 3–manifolds, Geom. Dedicata 126 (2007) 187 | DOI
, ,[23] Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér. 41 (2008) 437 | DOI
,[24] Cyclic surfaces and Hitchin components in rank 2, Ann. of Math. 185 (2017) 1 | DOI
,[25] Applications harmoniques entre graphes finis et un théorème de superrigidité, Ann. Inst. Fourier Grenoble 46 (1996) 1183 | DOI
,[26] A closed ball compactification of a maximal component via cores of trees, preprint (2021)
, , ,[27] Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989) 95 | DOI
,[28] Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007) 3 | DOI
,[29] Harmonic maps, length, and energy in Teichmüller space, J. Differential Geom. 35 (1992) 151
,[30] Group actions on trees and the compactification of the space of classes of SO(n,1)–representations, Topology 25 (1986) 1 | DOI
,[31] Valuations, trees, and degenerations of hyperbolic structures, I, Ann. of Math. 120 (1984) 401 | DOI
, ,[32] Free actions of surface groups on R–trees, Topology 30 (1991) 143 | DOI
, ,[33] Le spectre marqué des longueurs des surfaces à courbure négative, Ann. of Math. 131 (1990) 151 | DOI
,[34] Limits of Blaschke metrics, Duke Math. J. 170 (2021) 1683 | DOI
, ,[35] Length spectrum compactification of the SO0(2,3)–Hitchin component, Adv. Math. 420 (2023) | DOI
, ,[36] Boundary of the Gothen components, Topology Appl. 326 (2023) 108420 | DOI
, ,[37] Combinatorics of train tracks, 125, Princeton Univ. Press (1992) | DOI
, ,[38] Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. 11 (1978) 211 | DOI
,[39] The role of harmonic mappings in rigidity and deformation problems, from: "Complex geometry" (editors G Komatsu, Y Sakane), Lecture Notes in Pure and Appl. Math. 143, Dekker (1993) 179
,[40] On univalent harmonic maps between surfaces, Invent. Math. 44 (1978) 265 | DOI
, ,[41] Splittings of surfaces, J. Amer. Math. Soc. 9 (1996) 605 | DOI
,[42] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988) 417 | DOI
,[43] An invitation to higher Teichmüller theory, from: "Proceedings of the International Congress of Mathematicians" (editors B Sirakov, P N de Souza, M Viana), World Sci. (2018) 1013
,[44] The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989) 449
,[45] High energy degeneration of harmonic maps between surfaces and rays in Teichmüller space, Topology 30 (1991) 517 | DOI
,[46] Harmonic maps from surfaces to R–trees, Math. Z. 218 (1995) 577 | DOI
,Cité par Sources :