Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if is a closed manifold of dimension (resp. ) with (resp. ) that admits a metric of positive scalar curvature, then a finite cover of is homotopy equivalent to or connected sums of . Our approach combines recent advances in the study of positive scalar curvature with a novel argument of Alpert, Balitskiy and Guth.
Additionally, we prove a more general mapping version of this result. In particular, this implies that if is a closed manifold of dimensions or , and admits a map of nonzero degree to a closed aspherical manifold, then does not admit any Riemannian metric with positive scalar curvature.
Chodosh, Otis 1 ; Li, Chao 2 ; Liokumovich, Yevgeny 3
@article{GT_2023_27_4_a5, author = {Chodosh, Otis and Li, Chao and Liokumovich, Yevgeny}, title = {Classifying sufficiently connected {PSC} manifolds in 4 and 5 dimensions}, journal = {Geometry & topology}, pages = {1635--1655}, publisher = {mathdoc}, volume = {27}, number = {4}, year = {2023}, doi = {10.2140/gt.2023.27.1635}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1635/} }
TY - JOUR AU - Chodosh, Otis AU - Li, Chao AU - Liokumovich, Yevgeny TI - Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions JO - Geometry & topology PY - 2023 SP - 1635 EP - 1655 VL - 27 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1635/ DO - 10.2140/gt.2023.27.1635 ID - GT_2023_27_4_a5 ER -
%0 Journal Article %A Chodosh, Otis %A Li, Chao %A Liokumovich, Yevgeny %T Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions %J Geometry & topology %D 2023 %P 1635-1655 %V 27 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1635/ %R 10.2140/gt.2023.27.1635 %F GT_2023_27_4_a5
Chodosh, Otis; Li, Chao; Liokumovich, Yevgeny. Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions. Geometry & topology, Tome 27 (2023) no. 4, pp. 1635-1655. doi : 10.2140/gt.2023.27.1635. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1635/
[1] Macroscopic scalar curvature and codimension 2 width, preprint (2021)
, , ,[2] About the macroscopic dimension of certain PSC-manifolds, Algebr. Geom. Topol. 9 (2009) 21 | DOI
,[3] On Gromov’s scalar curvature conjecture, Proc. Amer. Math. Soc. 138 (2010) 1517 | DOI
, ,[4] Ricci flow with surgery on manifolds with positive isotropic curvature, Ann. of Math. 190 (2019) 465 | DOI
,[5] Manifolds with 1∕4–pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009) 287 | DOI
, ,[6] Complete classification of compact four-manifolds with positive isotropic curvature, J. Differential Geom. 91 (2012) 41
, , ,[7] Generalized soap bubbles and the topology of manifolds with positive scalar curvature, preprint (2020)
, ,[8] The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449 | DOI
,[9] Ends, from: "Topology of –manifolds and related topics" (editor M K Fort Jr.), Prentice-Hall (1962) 110
,[10] Fundamental groups of manifolds with positive isotropic curvature, Ann. of Math. 158 (2003) 345 | DOI
,[11] The topology of four-dimensional manifolds, J. Differential Geometry 17 (1982) 357
,[12] On the topology of manifolds with positive isotropic curvature, Proc. Amer. Math. Soc. 137 (2009) 1807 | DOI
, ,[13] Positive curvature, macroscopic dimension, spectral gaps and higher signatures, from: "Functional analysis on the eve of the 21st century, II" (editors S Gindikin, J Lepowsky, R L Wilson), Progr. Math. 132, Birkhäuser (1996) 1 | DOI
,[14] No metrics with positive scalar curvatures on aspherical 5–manifolds, preprint (2020)
,[15] Four lectures on scalar curvature, preprint (2021)
,[16] Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980) 209 | DOI
, ,[17] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983) 83 | DOI
, ,[18] Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997) 1 | DOI
,[19] Algebraic topology, Cambridge Univ. Press (2002)
,[20] Compact manifolds of dimension n ≥ 12 with positive isotropic curvature, preprint (2019)
,[21] The first diameter of 3–manifolds of positive scalar curvature, Proc. Amer. Math. Soc. 104 (1988) 591 | DOI
,[22] Topological rigidity for non-aspherical manifolds, Pure Appl. Math. Q. 5 (2009) 873 | DOI
, ,[23] Waist inequality for 3–manifolds with positive scalar curvature, preprint (2020)
, ,[24] Rigidity of min-max minimal spheres in three-manifolds, Duke Math. J. 161 (2012) 2725 | DOI
, ,[25] Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. 127 (1988) 199 | DOI
, ,[26] Lectures on the h–cobordism theorem, Princeton Univ. Press (1965)
,[27] Isotropic curvature and the Ricci flow, Int. Math. Res. Not. 2010 (2010) 536 | DOI
,[28] Fill radius and the fundamental group, J. Topol. Anal. 2 (2010) 99 | DOI
, ,[29] Manifolds with poinwise 1∕4-pinched curvature, preprint (2007)
,[30] Topological methods in group theory, from: "Homological group theory" (editor C T C Wall), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ. Press (1979) 137 | DOI
, ,[31] Trees, Springer (2003) | DOI
,Cité par Sources :