Birational geometry of the intermediate Jacobian fibration of a cubic fourfold
Geometry & topology, Tome 27 (2023) no. 4, pp. 1479-1538.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the intermediate Jacobian fibration associated to any smooth cubic fourfold X admits a hyper-Kähler compactification J(X) with a regular Lagrangian fibration π: J 5. This builds upon work of Laza, Saccà and Voisin (2017), where the result is proved for general X, as well as on the degeneration techniques introduced in the work of Kollár, Laza, Saccà and Voisin, and the minimal model program. We then study some aspects of the birational geometry of J(X): for very general X we compute the movable and nef cones of J(X), showing that J(X) is not birational to the twisted version of the intermediate Jacobian fibration, nor to an OG10–type moduli space of objects in the Kuznetsov component of X; for any smooth X we show, using normal functions, that the Mordell–Weil group MW(π) of the fibration is isomorphic to the integral degree-4 primitive algebraic cohomology of X, ie MW(π)H2,2(X, )0.

DOI : 10.2140/gt.2023.27.1479
Keywords: hyper-Kähler, holomorphic symplectic, OG10, intermediate Jacobian

Saccà, Giulia 1

1 Department of Mathematics, Columbia University, New York, NY, United States
@article{GT_2023_27_4_a2,
     author = {Sacc\`a, Giulia},
     title = {Birational geometry of the intermediate {Jacobian} fibration of a cubic fourfold},
     journal = {Geometry & topology},
     pages = {1479--1538},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {2023},
     doi = {10.2140/gt.2023.27.1479},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1479/}
}
TY  - JOUR
AU  - Saccà, Giulia
TI  - Birational geometry of the intermediate Jacobian fibration of a cubic fourfold
JO  - Geometry & topology
PY  - 2023
SP  - 1479
EP  - 1538
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1479/
DO  - 10.2140/gt.2023.27.1479
ID  - GT_2023_27_4_a2
ER  - 
%0 Journal Article
%A Saccà, Giulia
%T Birational geometry of the intermediate Jacobian fibration of a cubic fourfold
%J Geometry & topology
%D 2023
%P 1479-1538
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1479/
%R 10.2140/gt.2023.27.1479
%F GT_2023_27_4_a2
Saccà, Giulia. Birational geometry of the intermediate Jacobian fibration of a cubic fourfold. Geometry & topology, Tome 27 (2023) no. 4, pp. 1479-1538. doi : 10.2140/gt.2023.27.1479. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1479/

[1] N Addington, On two rationality conjectures for cubic fourfolds, Math. Res. Lett. 23 (2016) 1 | DOI

[2] N Addington, R Thomas, Hodge theory and derived categories of cubic fourfolds, Duke Math. J. 163 (2014) 1885 | DOI

[3] V Alexeev, Compactified Jacobians and Torelli map, Publ. Res. Inst. Math. Sci. 40 (2004) 1241 | DOI

[4] D Arcara, A Bertram, Bridgeland-stable moduli spaces for K–trivial surfaces, J. Eur. Math. Soc. 15 (2013) 1 | DOI

[5] A Bayer, Wall-crossing implies Brill–Noether : applications of stability conditions on surfaces, from: "Algebraic geometry : Salt Lake City 2015" (editors T de Fernex, B Hassett, M Mustaţă, M Olsson, M Popa, R Thomas), Proc. Sympos. Pure Math. 97, Amer. Math. Soc. (2018) 3 | DOI

[6] A Bayer, M Lahoz, E Macrì, H Nuer, A Perry, P Stellari, Stability conditions in families, Publ. Math. Inst. Hautes Études Sci. 133 (2021) 157 | DOI

[7] A Bayer, E Macrì, MMP for moduli of sheaves on K3s via wall-crossing : nef and movable cones, Lagrangian fibrations, Invent. Math. 198 (2014) 505 | DOI

[8] A Bayer, E Macrì, Projectivity and birational geometry of Bridgeland moduli spaces, J. Amer. Math. Soc. 27 (2014) 707 | DOI

[9] A Beauville, Vector bundles on the cubic threefold, from: "Symposium in honor of C H Clemens" (editors A Bertram, J A Carlson, H Kley), Contemp. Math. 312, Amer. Math. Soc. (2002) 71 | DOI

[10] A Beauville, On the splitting of the Bloch–Beilinson filtration, from: "Algebraic cycles and motives, II" (editors J Nagel, C Peters), London Math. Soc. Lecture Note Ser. 344, Cambridge Univ. Press (2007) 38

[11] A Beauville, Vector bundles on Fano threefolds and K3 surfaces, Boll. Unione Mat. Ital. 15 (2022) 43 | DOI

[12] A Beauville, R Donagi, La variété des droites d’une hypersurface cubique de dimension 4, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985) 703

[13] C Birkar, P Cascini, C D Hacon, J Mckernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405 | DOI

[14] S Bochner, W T Martin, Several complex variables, 10, Princeton Univ. Press (1948)

[15] F A Bogomolov, On the cohomology ring of a simple hyper-Kähler manifold (on the results of Verbitsky), Geom. Funct. Anal. 6 (1996) 612 | DOI

[16] T Bridgeland, Stability conditions on K3 surfaces, Duke Math. J. 141 (2008) 241 | DOI

[17] P Brosnan, Perverse obstructions to flat regular compactifications, Math. Z. 290 (2018) 103 | DOI

[18] M A A De Cataldo, A Rapagnetta, G Saccà, The Hodge numbers of O’Grady 10 via Ngô strings, J. Math. Pures Appl. 156 (2021) 125 | DOI

[19] F Charles, G Mongardi, G Pacienza, Families of rational curves on holomorphic symplectic varieties and applications to zero-cycles, preprint (2019)

[20] C H Clemens, P A Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972) 281 | DOI

[21] H Clemens, The infinitesimal Abel–Jacobi mapping for hypersurfaces, from: "The Lefschetz centennial conference, I" (editor D Sundararaman), Contemp. Math. 58, Amer. Math. Soc. (1986) 81 | DOI

[22] A Collino, The fundamental group of the Fano surface, I, II, from: "Algebraic threefolds" (editor A Conte), Lecture Notes in Math. 947, Springer (1982) 209 | DOI

[23] A Collino, J P Murre, The intermediate Jacobian of a cubic threefold with one ordinary double point ; an algebraic-geometric approach, I, Nederl. Akad. Wetensch. Proc. Ser. A 81 (= Indag. Math. 40) (1978) 43 | DOI

[24] A Dimca, On the homology and cohomology of complete intersections with isolated singularities, Compositio Math. 58 (1986) 321

[25] R Donagi, E Markman, Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, from: "Integrable systems and quantum groups" (editors M Francaviglia, S Greco), Lecture Notes in Math. 1620, Springer (1996) 1 | DOI

[26] S Druel, Espace des modules des faisceaux de rang 2 semi-stables de classes de Chern c1 = 0, c2 = 2 et c3 = 0 sur la cubique de P4, Int. Math. Res. Not. (2000) 985 | DOI

[27] S Druel, Quelques remarques sur la décomposition de Zariski divisorielle sur les variétés dont la première classe de Chern est nulle, Math. Z. 267 (2011) 413 | DOI

[28] F El Zein, S Zucker, Extendability of normal functions associated to algebraic cycles, from: "Topics in transcendental algebraic geometry" (editor P Griffiths), Ann. of Math. Stud. 106, Princeton Univ. Press (1984) 269 | DOI

[29] D Greb, C Lehn, S Rollenske, Lagrangian fibrations on hyperkähler manifolds—on a question of Beauville, Ann. Sci. Éc. Norm. Supér. 46 (2013) 375 | DOI

[30] P A Griffiths, On the periods of certain rational integrals, I, II, Ann. of Math. 90 (1969) 460 | DOI

[31] P A Griffiths, Periods of integrals on algebraic manifolds, III : Some global differential-geometric properties of the period mapping, Inst. Hautes Études Sci. Publ. Math. 38 (1970) 125 | DOI

[32] C D Hacon, S J Kovács, Classification of higher dimensional algebraic varieties, 41, Birkhäuser (2010) | DOI

[33] J Harris, M Roth, J Starr, Curves of small degree on cubic threefolds, Rocky Mountain J. Math. 35 (2005) 761 | DOI

[34] B Hassett, Special cubic fourfolds, Compositio Math. 120 (2000) 1 | DOI

[35] D Huybrechts, Compact hyper-Kähler manifolds : basic results, Invent. Math. 135 (1999) 63 | DOI

[36] D Huybrechts, The Kähler cone of a compact hyperkähler manifold, Math. Ann. 326 (2003) 499 | DOI

[37] D Huybrechts, The K3 category of a cubic fourfold, Compos. Math. 153 (2017) 586 | DOI

[38] D Kaledin, M Lehn, C Sorger, Singular symplectic moduli spaces, Invent. Math. 164 (2006) 591 | DOI

[39] J Kollár, Rational curves on algebraic varieties, 32, Springer (1996) | DOI

[40] J Kollár, Deformations of elliptic Calabi–Yau manifolds, from: "Recent advances in algebraic geometry" (editors C D Hacon, M Mustaţă, M Popa), London Math. Soc. Lecture Note Ser. 417, Cambridge Univ. Press (2015) 254 | DOI

[41] J Kollár, R Laza, G Saccà, C Voisin, Remarks on degenerations of hyper-Kähler manifolds, Ann. Inst. Fourier (Grenoble) 68 (2018) 2837 | DOI

[42] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[43] A Kuznetsov, Derived categories of cubic fourfolds, from: "Cohomological and geometric approaches to rationality problems" (editors F Bogomolov, Y Tschinkel), Progr. Math. 282, Birkhäuser (2010) 219 | DOI

[44] M Lahoz, M Lehn, E Macrì, P Stellari, Generalized twisted cubics on a cubic fourfold as a moduli space of stable objects, J. Math. Pures Appl. 114 (2018) 85 | DOI

[45] C J Lai, Varieties fibered by good minimal models, Math. Ann. 350 (2011) 533 | DOI

[46] R Laza, The moduli space of cubic fourfolds via the period map, Ann. of Math. 172 (2010) 673 | DOI

[47] R Laza, G Saccà, C Voisin, A hyper-Kähler compactification of the intermediate Jacobian fibration associated with a cubic 4–fold, Acta Math. 218 (2017) 55 | DOI

[48] J Le Potier, Faisceaux semi-stables de dimension 1 sur le plan projectif, Rev. Roumaine Math. Pures Appl. 38 (1993) 635

[49] C Lehn, M Lehn, C Sorger, D Van Straten, Twisted cubics on cubic fourfolds, J. Reine Angew. Math. 731 (2017) 87 | DOI

[50] M Lehn, C Sorger, La singularité de O’Grady, J. Algebraic Geom. 15 (2006) 753 | DOI

[51] C Li, L Pertusi, X Zhao, Elliptic quintics on cubic fourfolds, O’Grady 10, and Lagrangian fibrations, Adv. Math. 408 (2022) | DOI

[52] E Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, from: "Complex and differential geometry" (editors W Ebeling, K Hulek, K Smoczyk), Springer Proc. Math. 8, Springer (2011) 257 | DOI

[53] E Markman, Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections, Kyoto J. Math. 53 (2013) 345 | DOI

[54] D Markushevich, A S Tikhomirov, The Abel–Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom. 10 (2001) 37

[55] D Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology 38 (1999) 79 | DOI

[56] D Matsushita, On almost holomorphic Lagrangian fibrations, Math. Ann. 358 (2014) 565 | DOI

[57] D Matsushita, On deformations of Lagrangian fibrations, from: "K3 surfaces and their moduli" (editors C Faber, G Farkas, G van der Geer), Progr. Math. 315, Birkhäuser (2016) 237 | DOI

[58] C Meachan, Z Zhang, Birational geometry of singular moduli spaces of O’Grady type, Adv. Math. 296 (2016) 210 | DOI

[59] Y Miyaoka, S Mori, A numerical criterion for uniruledness, Ann. of Math. 124 (1986) 65 | DOI

[60] S Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math. 77 (1984) 101 | DOI

[61] N Nakayama, Zariski-decomposition and abundance, 14, Math. Soc. Japan (2004) | DOI

[62] Y Namikawa, Deformation theory of singular symplectic n–folds, Math. Ann. 319 (2001) 597 | DOI

[63] K G O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math. 512 (1999) 49 | DOI

[64] K Oguiso, Picard number of the generic fiber of an abelian fibered hyperkähler manifold, Math. Ann. 344 (2009) 929 | DOI

[65] K Oguiso, Shioda–Tate formula for an abelian fibered variety and applications, J. Korean Math. Soc. 46 (2009) 237 | DOI

[66] A Perego, A Rapagnetta, Deformation of the O’Grady moduli spaces, J. Reine Angew. Math. 678 (2013) 1 | DOI

[67] A Perego, A Rapagnetta, Factoriality properties of moduli spaces of sheaves on abelian and K3 surfaces, Int. Math. Res. Not. 2014 (2014) 643 | DOI

[68] A Perry, The integral Hodge conjecture for two-dimensional Calabi–Yau categories, Compos. Math. 158 (2022) 287 | DOI

[69] C A M Peters, J H M Steenbrink, Mixed Hodge structures, 52, Springer (2008) | DOI

[70] Z Ran, Hodge theory and the Hilbert scheme, J. Differential Geom. 37 (1993) 191

[71] A Rapagnetta, On the Beauville form of the known irreducible symplectic varieties, Math. Ann. 340 (2008) 77 | DOI

[72] U Rieß, On Beauville’s conjectural weak splitting property, Int. Math. Res. Not. 2016 (2016) 6133 | DOI

[73] J Sawon, On the discriminant locus of a Lagrangian fibration, Math. Ann. 341 (2008) 201 | DOI

[74] J Sawon, Deformations of holomorphic Lagrangian fibrations, Proc. Amer. Math. Soc. 137 (2009) 279 | DOI

[75] S Takayama, On uniruled degenerations of algebraic varieties with trivial canonical divisor, Math. Z. 259 (2008) 487 | DOI

[76] C Voisin, Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, from: "Complex projective geometry" (editors G Ellingsrud, C Peskine, G Sacchiero, S A Strømme), London Math. Soc. Lecture Note Ser. 179, Cambridge Univ. Press (1992) 294 | DOI

[77] C Voisin, Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2003) | DOI

[78] C Voisin, Some aspects of the Hodge conjecture, Jpn. J. Math. 2 (2007) 261 | DOI

[79] C Voisin, Chow rings, decomposition of the diagonal, and the topology of families, 187, Princeton Univ. Press (2014) | DOI

[80] C Voisin, Hyper-Kähler compactification of the intermediate Jacobian fibration of a cubic fourfold : the twisted case, from: "Local and global methods in algebraic geometry" (editors N Budur, T de Fernex, R Docampo, K Tucker), Contemp. Math. 712, Amer. Math. Soc. (2018) 341 | DOI

[81] C Voisin, Torsion points of sections of Lagrangian torus fibrations and the Chow ring of hyper-Kähler manifolds, from: "Geometry of moduli" (editors J A Christophersen, K Ranestad), Abel Symp. 14, Springer (2018) 295 | DOI

[82] K Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001) 817 | DOI

[83] S Zucker, Generalized intermediate Jacobians and the theorem on normal functions, Invent. Math. 33 (1976) 185 | DOI

[84] S Zucker, The Hodge conjecture for cubic fourfolds, Compositio Math. 34 (1977) 199

Cité par Sources :