Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2
Geometry & topology, Tome 27 (2023) no. 1, pp. 131-152.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct non-Kähler simply connected Calabi–Yau 3–folds with arbitrarily large 2 nd Betti numbers by smoothing normal crossing varieties with trivial dualizing sheaves.

DOI : 10.2140/gt.2023.27.131
Keywords: Calabi–Yau manifolds, deformation theory, log geometry

Hashimoto, Kenji 1 ; Sano, Taro 2

1 Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan
2 Department of Mathematics, Graduate School of Science, Kobe University, Kobe, Japan
@article{GT_2023_27_1_a3,
     author = {Hashimoto, Kenji and Sano, Taro},
     title = {Examples of {non-K\"ahler} {Calabi{\textendash}Yau} 3{\textendash}folds with arbitrarily large b2},
     journal = {Geometry & topology},
     pages = {131--152},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2023},
     doi = {10.2140/gt.2023.27.131},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.131/}
}
TY  - JOUR
AU  - Hashimoto, Kenji
AU  - Sano, Taro
TI  - Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2
JO  - Geometry & topology
PY  - 2023
SP  - 131
EP  - 152
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.131/
DO  - 10.2140/gt.2023.27.131
ID  - GT_2023_27_1_a3
ER  - 
%0 Journal Article
%A Hashimoto, Kenji
%A Sano, Taro
%T Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2
%J Geometry & topology
%D 2023
%P 131-152
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.131/
%R 10.2140/gt.2023.27.131
%F GT_2023_27_1_a3
Hashimoto, Kenji; Sano, Taro. Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2. Geometry & topology, Tome 27 (2023) no. 1, pp. 131-152. doi : 10.2140/gt.2023.27.131. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.131/

[1] S Anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, from: "Sur les groupes algébriques", Mém. Bull. Soc. Math. France 33, Soc. Math. France (1973) 5 | DOI

[2] B Anthes, A Cattaneo, S Rollenske, A Tomassini, ∂∂–complex symplectic and Calabi–Yau manifolds : Albanese map, deformations and period maps, Ann. Global Anal. Geom. 54 (2018) 377 | DOI

[3] A Baragar, The ample cone for a K3 surface, Canad. J. Math. 63 (2011) 481 | DOI

[4] F Campana, The class C is not stable by small deformations, Math. Ann. 290 (1991) 19 | DOI

[5] S Cantat, K Oguiso, Birational automorphism groups and the movable cone theorem for Calabi–Yau manifolds of Wehler type via universal Coxeter groups, Amer. J. Math. 137 (2015) 1013 | DOI

[6] K Chan, N C Leung, Z N Ma, Geometry of the Maurer–Cartan equation near degenerate Calabi–Yau varieties, preprint (2019)

[7] C H Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977) 215

[8] H Clemens, Homological equivalence, modulo algebraic equivalence, is not finitely generated, Inst. Hautes Études Sci. Publ. Math. 58 (1983) 19

[9] A Dimca, Singularities and topology of hypersurfaces, Springer (1992) | DOI

[10] C F Doran, A Harder, A Thompson, Mirror symmetry, Tyurin degenerations and fibrations on Calabi–Yau manifolds, from: "String-Math 2015" (editors S Li, B H Lian, W Song), Proc. Sympos. Pure Math. 96, Amer. Math. Soc. (2017) 93

[11] S Felten, M Filip, H Ruddat, Smoothing toroidal crossing spaces, Forum Math. Pi 9 (2021) | DOI

[12] S Felten, A Petracci, The logarithmic Bogomolov–Tian–Todorov theorem, Bull. Lond. Math. Soc. 54 (2022) 1051 | DOI

[13] D Ferrand, Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003) 553 | DOI

[14] J Fine, D Panov, Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle, Geom. Topol. 14 (2010) 1723 | DOI

[15] R Friedman, Global smoothings of varieties with normal crossings, Ann. of Math. 118 (1983) 75 | DOI

[16] R Friedman, On threefolds with trivial canonical bundle, from: "Complex geometry and Lie theory" (editors J A Carlson, C H Clemens, D R Morrison), Proc. Sympos. Pure Math. 53, Amer. Math. Soc. (1991) 103 | DOI

[17] R Friedman, The ∂∂–lemma for general Clemens manifolds, Pure Appl. Math. Q. 15 (2019) 1001 | DOI

[18] J Fu, J Li, S T Yau, Balanced metrics on non-Kähler Calabi–Yau threefolds, J. Differential Geom. 90 (2012) 81

[19] T Fujisawa, C Nakayama, Mixed Hodge structures on log deformations, Rend. Sem. Mat. Univ. Padova 110 (2003) 221

[20] W Fulton, Introduction to toric varieties, 131, Princeton Univ. Press (1993) | DOI

[21] H Hironaka, An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures, Ann. of Math. 75 (1962) 190 | DOI

[22] D Huybrechts, Lectures on K3 surfaces, 158, Cambridge Univ. Press (2016) | DOI

[23] A Kanazawa, Doran–Harder–Thompson conjecture via SYZ mirror symmetry : elliptic curves, Symmetry Integrability Geom. Methods Appl. 13 (2017) | DOI

[24] Y Kawamata, Y Namikawa, Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi–Yau varieties, Invent. Math. 118 (1994) 395 | DOI

[25] C Lebrun, Y S Poon, Twistors, Kähler manifolds, and bimeromorphic geometry, II, J. Amer. Math. Soc. 5 (1992) 317 | DOI

[26] N H Lee, Calabi–Yau construction by smoothing normal crossing varieties, Internat. J. Math. 21 (2010) 701 | DOI

[27] M V Nori, Zariski’s conjecture and related problems, Ann. Sci. École Norm. Sup. 16 (1983) 305

[28] C Okonek, A Van De Ven, Cubic forms and complex 3–folds, Enseign. Math. 41 (1995) 297

[29] C A M Peters, J H M Steenbrink, Mixed Hodge structures, 52, Springer (2008) | DOI

[30] D Popovici, Deformation limits of projective manifolds : Hodge numbers and strongly Gauduchon metrics, Invent. Math. 194 (2013) 515 | DOI

[31] D Popovici, Adiabatic limit and deformations of complex structures, preprint (2019)

[32] S Rao, I H Tsai, Deformation limit and bimeromorphic embedding of Moishezon manifolds, Commun. Contemp. Math. 23 (2021) | DOI

[33] G V Ravindra, V Srinivas, The Noether–Lefschetz theorem for the divisor class group, J. Algebra 322 (2009) 3373 | DOI

[34] B Saint-Donat, Projective models of K − 3 surfaces, Amer. J. Math. 96 (1974) 602 | DOI

[35] K Schwede, Gluing schemes and a scheme without closed points, from: "Recent progress in arithmetic and algebraic geometry" (editors Y Kachi, S B Mulay, P Tzermias), Contemp. Math. 386, Amer. Math. Soc. (2005) 157 | DOI

[36] I Shimada, Remarks on fundamental groups of complements of divisors on algebraic varieties, Kodai Math. J. 17 (1994) 311 | DOI

[37] E H Spanier, Algebraic topology, Springer (1995)

[38] V Tosatti, Non-Kähler Calabi–Yau manifolds, from: "Analysis, complex geometry, and mathematical physics : in honor of Duong H Phong", Contemp. Math. 644, Amer. Math. Soc. (2015) 261 | DOI

[39] L S Tseng, S T Yau, Non-Kähler Calabi–Yau manifolds, from: "String-Math 2011" (editors J Block, J Distler, R Donagi, E Sharpe), Proc. Sympos. Pure Math. 85, Amer. Math. Soc. (2012) 241 | DOI

[40] A N Tyurin, Fano versus Calabi–Yau, from: "The Fano Conference" (editors A Collino, A Conte, M Marchisio), Univ. Torino (2004) 701

[41] S Usui, Recovery of vanishing cycles by log geometry, Tohoku Math. J. 53 (2001) 1 | DOI

[42] C Voisin, Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2007)

[43] L Wang, Rational points and canonical heights on K3–surfaces in P1 × P1 × P1, from: "Recent developments in the inverse Galois problem" (editors M D Fried, S S Abhyankar, W Feit, Y Ihara, H Voelklein), Contemp. Math. 186, Amer. Math. Soc. (1995) 273 | DOI

Cité par Sources :