Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct non-Kähler simply connected Calabi–Yau –folds with arbitrarily large Betti numbers by smoothing normal crossing varieties with trivial dualizing sheaves.
Hashimoto, Kenji 1 ; Sano, Taro 2
@article{GT_2023_27_1_a3, author = {Hashimoto, Kenji and Sano, Taro}, title = {Examples of {non-K\"ahler} {Calabi{\textendash}Yau} 3{\textendash}folds with arbitrarily large b2}, journal = {Geometry & topology}, pages = {131--152}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2023}, doi = {10.2140/gt.2023.27.131}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.131/} }
TY - JOUR AU - Hashimoto, Kenji AU - Sano, Taro TI - Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2 JO - Geometry & topology PY - 2023 SP - 131 EP - 152 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.131/ DO - 10.2140/gt.2023.27.131 ID - GT_2023_27_1_a3 ER -
Hashimoto, Kenji; Sano, Taro. Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2. Geometry & topology, Tome 27 (2023) no. 1, pp. 131-152. doi : 10.2140/gt.2023.27.131. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.131/
[1] Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1, from: "Sur les groupes algébriques", Mém. Bull. Soc. Math. France 33, Soc. Math. France (1973) 5 | DOI
,[2] ∂∂–complex symplectic and Calabi–Yau manifolds : Albanese map, deformations and period maps, Ann. Global Anal. Geom. 54 (2018) 377 | DOI
, , , ,[3] The ample cone for a K3 surface, Canad. J. Math. 63 (2011) 481 | DOI
,[4] The class C is not stable by small deformations, Math. Ann. 290 (1991) 19 | DOI
,[5] Birational automorphism groups and the movable cone theorem for Calabi–Yau manifolds of Wehler type via universal Coxeter groups, Amer. J. Math. 137 (2015) 1013 | DOI
, ,[6] Geometry of the Maurer–Cartan equation near degenerate Calabi–Yau varieties, preprint (2019)
, , ,[7] Degeneration of Kähler manifolds, Duke Math. J. 44 (1977) 215
,[8] Homological equivalence, modulo algebraic equivalence, is not finitely generated, Inst. Hautes Études Sci. Publ. Math. 58 (1983) 19
,[9] Singularities and topology of hypersurfaces, Springer (1992) | DOI
,[10] Mirror symmetry, Tyurin degenerations and fibrations on Calabi–Yau manifolds, from: "String-Math 2015" (editors S Li, B H Lian, W Song), Proc. Sympos. Pure Math. 96, Amer. Math. Soc. (2017) 93
, , ,[11] Smoothing toroidal crossing spaces, Forum Math. Pi 9 (2021) | DOI
, , ,[12] The logarithmic Bogomolov–Tian–Todorov theorem, Bull. Lond. Math. Soc. 54 (2022) 1051 | DOI
, ,[13] Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003) 553 | DOI
,[14] Hyperbolic geometry and non-Kähler manifolds with trivial canonical bundle, Geom. Topol. 14 (2010) 1723 | DOI
, ,[15] Global smoothings of varieties with normal crossings, Ann. of Math. 118 (1983) 75 | DOI
,[16] On threefolds with trivial canonical bundle, from: "Complex geometry and Lie theory" (editors J A Carlson, C H Clemens, D R Morrison), Proc. Sympos. Pure Math. 53, Amer. Math. Soc. (1991) 103 | DOI
,[17] The ∂∂–lemma for general Clemens manifolds, Pure Appl. Math. Q. 15 (2019) 1001 | DOI
,[18] Balanced metrics on non-Kähler Calabi–Yau threefolds, J. Differential Geom. 90 (2012) 81
, , ,[19] Mixed Hodge structures on log deformations, Rend. Sem. Mat. Univ. Padova 110 (2003) 221
, ,[20] Introduction to toric varieties, 131, Princeton Univ. Press (1993) | DOI
,[21] An example of a non-Kählerian complex-analytic deformation of Kählerian complex structures, Ann. of Math. 75 (1962) 190 | DOI
,[22] Lectures on K3 surfaces, 158, Cambridge Univ. Press (2016) | DOI
,[23] Doran–Harder–Thompson conjecture via SYZ mirror symmetry : elliptic curves, Symmetry Integrability Geom. Methods Appl. 13 (2017) | DOI
,[24] Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi–Yau varieties, Invent. Math. 118 (1994) 395 | DOI
, ,[25] Twistors, Kähler manifolds, and bimeromorphic geometry, II, J. Amer. Math. Soc. 5 (1992) 317 | DOI
, ,[26] Calabi–Yau construction by smoothing normal crossing varieties, Internat. J. Math. 21 (2010) 701 | DOI
,[27] Zariski’s conjecture and related problems, Ann. Sci. École Norm. Sup. 16 (1983) 305
,[28] Cubic forms and complex 3–folds, Enseign. Math. 41 (1995) 297
, ,[29] Mixed Hodge structures, 52, Springer (2008) | DOI
, ,[30] Deformation limits of projective manifolds : Hodge numbers and strongly Gauduchon metrics, Invent. Math. 194 (2013) 515 | DOI
,[31] Adiabatic limit and deformations of complex structures, preprint (2019)
,[32] Deformation limit and bimeromorphic embedding of Moishezon manifolds, Commun. Contemp. Math. 23 (2021) | DOI
, ,[33] The Noether–Lefschetz theorem for the divisor class group, J. Algebra 322 (2009) 3373 | DOI
, ,[34] Projective models of K − 3 surfaces, Amer. J. Math. 96 (1974) 602 | DOI
,[35] Gluing schemes and a scheme without closed points, from: "Recent progress in arithmetic and algebraic geometry" (editors Y Kachi, S B Mulay, P Tzermias), Contemp. Math. 386, Amer. Math. Soc. (2005) 157 | DOI
,[36] Remarks on fundamental groups of complements of divisors on algebraic varieties, Kodai Math. J. 17 (1994) 311 | DOI
,[37] Algebraic topology, Springer (1995)
,[38] Non-Kähler Calabi–Yau manifolds, from: "Analysis, complex geometry, and mathematical physics : in honor of Duong H Phong", Contemp. Math. 644, Amer. Math. Soc. (2015) 261 | DOI
,[39] Non-Kähler Calabi–Yau manifolds, from: "String-Math 2011" (editors J Block, J Distler, R Donagi, E Sharpe), Proc. Sympos. Pure Math. 85, Amer. Math. Soc. (2012) 241 | DOI
, ,[40] Fano versus Calabi–Yau, from: "The Fano Conference" (editors A Collino, A Conte, M Marchisio), Univ. Torino (2004) 701
,[41] Recovery of vanishing cycles by log geometry, Tohoku Math. J. 53 (2001) 1 | DOI
,[42] Hodge theory and complex algebraic geometry, II, 77, Cambridge Univ. Press (2007)
,[43] Rational points and canonical heights on K3–surfaces in P1 × P1 × P1, from: "Recent developments in the inverse Galois problem" (editors M D Fried, S S Abhyankar, W Feit, Y Ihara, H Voelklein), Contemp. Math. 186, Amer. Math. Soc. (1995) 273 | DOI
,Cité par Sources :