A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves
Geometry & topology, Tome 27 (2023) no. 3, pp. 1203-1272.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a modular desingularisation of ¯2,n(r,d)main. The geometry of Gorenstein singularities of genus two leads us to consider maps from prestable admissible covers; with this enhanced logarithmic structure, it is possible to desingularise the main component by means of a logarithmic modification. Both isolated and nonreduced singularities appear naturally. Our construction gives rise to a notion of reduced Gromov–Witten invariants in genus two.

DOI : 10.2140/gt.2023.27.1203
Keywords: curves of genus two, Gorenstein curves, Vakil–Zinger, desingularisation, moduli space, reduced Gromov–Witten invariants

Battistella, Luca 1 ; Carocci, Francesca 2

1 Humboldt-Universität zu Berlin, Institut für Mathematik, Berlin, Germany
2 Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
@article{GT_2023_27_3_a4,
     author = {Battistella, Luca and Carocci, Francesca},
     title = {A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and {Gorenstein} curves},
     journal = {Geometry & topology},
     pages = {1203--1272},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2023},
     doi = {10.2140/gt.2023.27.1203},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1203/}
}
TY  - JOUR
AU  - Battistella, Luca
AU  - Carocci, Francesca
TI  - A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves
JO  - Geometry & topology
PY  - 2023
SP  - 1203
EP  - 1272
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1203/
DO  - 10.2140/gt.2023.27.1203
ID  - GT_2023_27_3_a4
ER  - 
%0 Journal Article
%A Battistella, Luca
%A Carocci, Francesca
%T A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves
%J Geometry & topology
%D 2023
%P 1203-1272
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1203/
%R 10.2140/gt.2023.27.1203
%F GT_2023_27_3_a4
Battistella, Luca; Carocci, Francesca. A smooth compactification of the space of genus two curves in projective space: via logarithmic geometry and Gorenstein curves. Geometry & topology, Tome 27 (2023) no. 3, pp. 1203-1272. doi : 10.2140/gt.2023.27.1203. http://geodesic.mathdoc.fr/articles/10.2140/gt.2023.27.1203/

[1] D Abramovich, Q Chen, S Marcus, M Ulirsch, J Wise, Skeletons and fans of logarithmic structures, from: "Nonarchimedean and tropical geometry" (editors M Baker, S Payne), Springer (2016) 287 | DOI

[2] D Abramovich, Q Chen, S Marcus, J Wise, Boundedness of the space of stable logarithmic maps, J. Eur. Math. Soc. 19 (2017) 2783 | DOI

[3] D Abramovich, A Corti, A Vistoli, Twisted bundles and admissible covers, Comm. Algebra 31 (2003) 3547 | DOI

[4] D Abramovich, K Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000) 241 | DOI

[5] D Abramovich, J Wise, Birational invariance in logarithmic Gromov–Witten theory, Compos. Math. 154 (2018) 595 | DOI

[6] J Alper, M Fedorchuk, D I Smyth, Singularities with Gm–action and the log minimal model program for Mg, J. Reine Angew. Math. 721 (2016) 1 | DOI

[7] J Alper, M Fedorchuk, D I Smyth, F Van Der Wyck, Second flip in the Hassett–Keel program : a local description, Compos. Math. 153 (2017) 1547 | DOI

[8] O Amini, M Baker, E Brugallé, J Rabinoff, Lifting harmonic morphisms, II : Tropical curves and metrized complexes, Algebra Number Theory 9 (2015) 267 | DOI

[9] M Bainbridge, D Chen, Q Gendron, S Grushevsky, M Möller, The moduli space of multi-scale differentials, preprint (2019)

[10] L Battistella, Alternative compactifications in low genus Gromov–Witten theory, PhD thesis, Imperial College London (2018)

[11] L Battistella, Modular compactifications of M2,n with Gorenstein curves, Algebra Number Theory 16 (2022) 1547 | DOI

[12] L Battistella, F Carocci, A geographical study of M2(P2,4)main, Adv. Geom. 22 (2022) 463

[13] L Battistella, N Nabijou, D Ranganathan, Curve counting in genus one: elliptic singularities and relative geometry, Algebr. Geom. 8 (2021) 637 | DOI

[14] D Bayer, D Eisenbud, Ribbons and their canonical embeddings, Trans. Amer. Math. Soc. 347 (1995) 719 | DOI

[15] K Behrend, B Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997) 45 | DOI

[16] P Belmans, A J De Jong, Others, The Stacks project, electronic reference (2005–)

[17] N Borne, A Vistoli, Parabolic sheaves on logarithmic schemes, Adv. Math. 231 (2012) 1327 | DOI

[18] S Bozlee, Contractions of subcurves of families of log curves, Comm. Algebra 49 (2021) 4616 | DOI

[19] S Bozlee, B Kuo, A Neff, A classification of modular compactifications of the space of pointed elliptic curves by Gorenstein curves, Algebra Number Theory 17 (2023) 127 | DOI

[20] F Catanese, Pluricanonical Gorenstein curves, from: "Enumerative geometry and classical algebraic geometry" (editors P Le Barz, Y Hervier), Progr. Math. 24, Birkhäuser (1982) 51 | DOI

[21] R Cavalieri, M Chan, M Ulirsch, J Wise, A moduli stack of tropical curves, Forum Math. Sigma 8 (2020) | DOI

[22] R Cavalieri, H Markwig, D Ranganathan, Tropicalizing the space of admissible covers, Math. Ann. 364 (2016) 1275 | DOI

[23] M Chan, Tropical hyperelliptic curves, J. Algebraic Combin. 37 (2013) 331 | DOI

[24] H L Chang, S Guo, J Li, BCOV’s Feynman rule of quintic 3–folds, preprint (2018)

[25] I Ciocan-Fontanine, B Kim, Moduli stacks of stable toric quasimaps, Adv. Math. 225 (2010) 3022 | DOI

[26] T Coates, C Manolache, A splitting of the virtual class for genus one stable maps, preprint (2018)

[27] M A Cueto, H Markwig, Tropical geometry of genus two curves, J. Algebra 517 (2019) 457 | DOI

[28] O Debarre, Higher-dimensional algebraic geometry, Springer (2001) | DOI

[29] J M Drézet, Paramétrisation des courbes multiples primitives, Adv. Geom. 7 (2007) 559 | DOI

[30] D Ferrand, Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003) 553 | DOI

[31] L Y Fong, Rational ribbons and deformation of hyperelliptic curves, J. Algebraic Geom. 2 (1993) 295

[32] W D Gillam, Logarithmic stacks and minimality, Internat. J. Math. 23 (2012) | DOI

[33] T Graber, J Kock, R Pandharipande, Descendant invariants and characteristic numbers, Amer. J. Math. 124 (2002) 611 | DOI

[34] M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 | DOI

[35] S Guo, F Janda, Y Ruan, A mirror theorem for genus two Gromov–Witten invariants of quintic threefolds, preprint (2017)

[36] C Haase, G Musiker, J Yu, Linear systems on tropical curves, Math. Z. 270 (2012) 1111 | DOI

[37] J Harris, D Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982) 23 | DOI

[38] Y Hu, J Li, Genus-one stable maps, local equations, and Vakil–Zinger’s desingularization, Math. Ann. 348 (2010) 929 | DOI

[39] Y Hu, J Li, Derived resolution property for stacks, Euler classes and applications, Math. Res. Lett. 18 (2011) 677 | DOI

[40] Y Hu, J Li, J Niu, Genus two stable maps, local equations and modular resolutions, preprint (2018)

[41] Y Hu, J Niu, A theory of stacks with twisted fields and resolution of moduli of genus two stable maps, preprint (2020)

[42] D Johnson, A Polishchuk, Birational models of M2,2 arising as moduli of curves with nonspecial divisors, Adv. Geom. 21 (2021) 23 | DOI

[43] F Kato, Log smooth deformation and moduli of log smooth curves, Internat. J. Math. 11 (2000) 215 | DOI

[44] B Kim, Logarithmic stable maps, from: "New developments in algebraic geometry, integrable systems and mirror symmetry" (editors M H Saito, S Hosono, K Yoshioka), Adv. Stud. Pure Math. 59, Math. Soc. Japan (2010) 167 | DOI

[45] B Kim, A Kresch, T Pantev, Functoriality in intersection theory and a conjecture of Cox, Katz, and Lee, J. Pure Appl. Algebra 179 (2003) 127 | DOI

[46] J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) | DOI

[47] M Kontsevich, Enumeration of rational curves via torus actions, from: "The moduli space of curves" (editors R Dijkgraaf, C Faber, G van der Geer), Progr. Math. 129, Birkhäuser (1995) 335 | DOI

[48] S J Kovács, Rational singularities, preprint (2017)

[49] A G Kuznetsov, Hyperplane sections and derived categories, Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006) 23 | DOI

[50] Y P Lee, Quantum Lefschetz hyperplane theorem, Invent. Math. 145 (2001) 121 | DOI

[51] J Li, A Zinger, On the genus-one Gromov–Witten invariants of complete intersections, J. Differential Geom. 82 (2009) 641

[52] C Manolache, Virtual push-forwards, Geom. Topol. 16 (2012) 2003 | DOI

[53] S Marcus, J Wise, Logarithmic compactification of the Abel–Jacobi section, Proc. Lond. Math. Soc. 121 (2020) 1207 | DOI

[54] H Matsumura, Commutative ring theory, 8, Cambridge Univ. Press (1989) | DOI

[55] S Mochizuki, The geometry of the compactification of the Hurwitz scheme, Publ. Res. Inst. Math. Sci. 31 (1995) 355 | DOI

[56] S Molcho, Universal stacky semistable reduction, Israel J. Math. 242 (2021) 55 | DOI

[57] M Möller, M Ulirsch, A Werner, Realizability of tropical canonical divisors, J. Eur. Math. Soc. 23 (2021) 185 | DOI

[58] W Nizioł, Toric singularities: log-blow-ups and global resolutions, J. Algebraic Geom. 15 (2006) 1 | DOI

[59] M C Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. École Norm. Sup. 36 (2003) 747 | DOI

[60] M C Olsson, (Log) twisted curves, Compos. Math. 143 (2007) 476 | DOI

[61] K S Parker, Semistable modular compactifications of moduli spaces of genus one curves, PhD thesis, University of Colorado at Boulder (2017)

[62] A Popa, The genus one Gromov–Witten invariants of Calabi–Yau complete intersections, Trans. Amer. Math. Soc. 365 (2013) 1149 | DOI

[63] D Ranganathan, K Santos-Parker, J Wise, Moduli of stable maps in genus one and logarithmic geometry, I, Geom. Topol. 23 (2019) 3315 | DOI

[64] D Ranganathan, K Santos-Parker, J Wise, Moduli of stable maps in genus one and logarithmic geometry, II, Algebra Number Theory 13 (2019) 1765 | DOI

[65] M Reid, Nonnormal del Pezzo surfaces, Publ. Res. Inst. Math. Sci. 30 (1994) 695 | DOI

[66] J P Serre, Algebraic groups and class fields, 117, Springer (1988) | DOI

[67] D I Smyth, Modular compactifications of the space of pointed elliptic curves, I, Compos. Math. 147 (2011) 877 | DOI

[68] D I Smyth, Modular compactifications of the space of pointed elliptic curves, II, Compos. Math. 147 (2011) 1843 | DOI

[69] D E Speyer, Tropical geometry, PhD thesis, University of California, Berkeley (2005)

[70] J Stevens, On the classification of reducible curve singularities, from: "Algebraic geometry and singularities" (editors A Campillo López, L Narváez Macarro), Progr. Math. 134, Birkhäuser (1996) 383 | DOI

[71] B Teissier, The hunting of invariants in the geometry of discriminants, from: "Real and complex singularities" (editor P Holm), Sijthoff and Noordhoff (1977) 565

[72] M Ulirsch, Functorial tropicalization of logarithmic schemes: the case of constant coefficients, Proc. Lond. Math. Soc. 114 (2017) 1081 | DOI

[73] M Ulirsch, Non-Archimedean geometry of Artin fans, Adv. Math. 345 (2019) 346 | DOI

[74] R Vakil, The enumerative geometry of rational and elliptic curves in projective space, J. Reine Angew. Math. 529 (2000) 101 | DOI

[75] R Vakil, Murphy’s law in algebraic geometry : badly-behaved deformation spaces, Invent. Math. 164 (2006) 569 | DOI

[76] R Vakil, A Zinger, A desingularization of the main component of the moduli space of genus-one stable maps into Pn, Geom. Topol. 12 (2008) 1 | DOI

[77] M Viscardi, Alternate compactifications of the moduli space of genus one maps, Manuscripta Math. 139 (2012) 201 | DOI

[78] J Wang, Deformations of pairs (X,L) when X is singular, Proc. Amer. Math. Soc. 140 (2012) 2953 | DOI

[79] P M H Wilson, On blowing up conductor ideals, Math. Proc. Cambridge Philos. Soc. 83 (1978) 445 | DOI

[80] F D W Van Der Wyck, Moduli of singular curves and crimping, PhD thesis, Harvard University (2010)

[81] A Zinger, Enumeration of genus-two curves with a fixed complex structure in P2 and P3, J. Differential Geom. 65 (2003) 341

[82] A Zinger, Standard versus reduced genus-one Gromov–Witten invariants, Geom. Topol. 12 (2008) 1203 | DOI

[83] A Zinger, The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer. Math. Soc. 22 (2009) 691 | DOI

[84] A Zinger, A sharp compactness theorem for genus-one pseudo-holomorphic maps, Geom. Topol. 13 (2009) 2427 | DOI

Cité par Sources :