From flops to diffeomorphism groups
Geometry & topology, Tome 26 (2022) no. 2, pp. 875-898.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We exhibit many examples of closed complex surfaces whose diffeomorphism groups are not simply connected and which contain loops that are not homotopic to loops of symplectomorphisms.

DOI : 10.2140/gt.2022.26.875
Keywords: diffeomorphism groups, Seiberg–Witten invariants, flop

Smirnov, Gleb 1

1 Department of Mathematics, ETH Zürich, Zürich, Switzerland
@article{GT_2022_26_2_a5,
     author = {Smirnov, Gleb},
     title = {From flops to diffeomorphism groups},
     journal = {Geometry & topology},
     pages = {875--898},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2022},
     doi = {10.2140/gt.2022.26.875},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.875/}
}
TY  - JOUR
AU  - Smirnov, Gleb
TI  - From flops to diffeomorphism groups
JO  - Geometry & topology
PY  - 2022
SP  - 875
EP  - 898
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.875/
DO  - 10.2140/gt.2022.26.875
ID  - GT_2022_26_2_a5
ER  - 
%0 Journal Article
%A Smirnov, Gleb
%T From flops to diffeomorphism groups
%J Geometry & topology
%D 2022
%P 875-898
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.875/
%R 10.2140/gt.2022.26.875
%F GT_2022_26_2_a5
Smirnov, Gleb. From flops to diffeomorphism groups. Geometry & topology, Tome 26 (2022) no. 2, pp. 875-898. doi : 10.2140/gt.2022.26.875. http://geodesic.mathdoc.fr/articles/10.2140/gt.2022.26.875/

[1] M Abreu, Topology of symplectomorphism groups of S2 × S2, Invent. Math. 131 (1998) 1 | DOI

[2] M Abreu, D Mcduff, Topology of symplectomorphism groups of rational ruled surfaces, J. Amer. Math. Soc. 13 (2000) 971 | DOI

[3] M F Atiyah, On analytic surfaces with double points, Proc. Roy. Soc. London Ser. A 247 (1958) 237 | DOI

[4] D Burns Jr., M Rapoport, On the Torelli problem for kählerian K–3 surfaces, Ann. Sci. École Norm. Sup. 8 (1975) 235 | DOI

[5] R Friedman, J W Morgan, Obstruction bundles, semiregularity, and Seiberg–Witten invariants, Comm. Anal. Geom. 7 (1999) 451 | DOI

[6] P A Griffiths, Periods of integrals on algebraic manifolds, II : Local study of the period mapping, Amer. J. Math. 90 (1968) 805 | DOI

[7] M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 | DOI

[8] K Kodaira, D C Spencer, On deformations of complex analytic structures, III : Stability theorems for complex structures, Ann. of Math. 71 (1960) 43 | DOI

[9] P. Kronheimer, Some non-trivial families of symplectic structures, preprint (1997)

[10] P B Kronheimer, T S Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797 | DOI

[11] T J Li, A K Liu, Family Seiberg–Witten invariants and wall crossing formulas, Comm. Anal. Geom. 9 (2001) 777 | DOI

[12] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Univ. Press (2017) | DOI

[13] J W Morgan, The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, 44, Princeton Univ. Press (1996)

[14] D R Morrison, Some remarks on the moduli of K3 surfaces, from: "Classification of algebraic and analytic manifolds" (editor K Ueno), Progr. Math. 39, Birkhäuser (1983) 303

[15] L I Nicolaescu, Notes on Seiberg–Witten theory, 28, Amer. Math. Soc. (2000) | DOI

[16] M Reid, Minimal models of canonical 3–folds, from: "Algebraic varieties and analytic varieties" (editor S Iitaka), Adv. Stud. Pure Math. 1, North-Holland (1983) 131 | DOI

[17] D Ruberman, An obstruction to smooth isotopy in dimension 4, Math. Res. Lett. 5 (1998) 743 | DOI

[18] D Ruberman, Positive scalar curvature, diffeomorphisms and the Seiberg–Witten invariants, Geom. Topol. 5 (2001) 895 | DOI

[19] D. Ruberman, D. Auckly, Exotic loops of diffeomorphisms of 4–manifolds, in preparation

[20] S Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965) 861 | DOI

[21] C H Taubes, More constraints on symplectic forms from Seiberg–Witten invariants, Math. Res. Lett. 2 (1995) 9 | DOI

[22] T Watanabe, Some exotic nontrivial elements of the rational homotopy groups of Diff(S4), preprint (2018)

Cité par Sources :